Skip to main content
Log in

Characterization of proteolytic and anti-proteolytic activity involvement in sterlet spermatozoon maturation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In sturgeon, the acquisition of the potential for motility activation called spermatozoon maturation takes place outside testes. This process can be accomplished in vitro by pre-incubation of immature testicular spermatozoa in seminal fluid collected from fully mature Wolffian duct sperm. Addition of trypsin inhibitor to the pre-incubation medium disrupts spermatozoon maturation. There are no available data for the role of proteolysis regulators in fish spermatozoon maturation, while their role is recognized in mammalian sperm maturation. The present study evaluated the involvement of seminal fluid proteases and anti-proteolytic activity in the sterlet spermatozoon maturation process. Casein and gelatin zymography and quantification of amidase and anti-proteolytic activity were conducted in sturgeon seminal fluid from Wolffian duct sperm and seminal fluid from testicular sperm, along with spermatozoon extracts from Wolffian duct spermatozoa, testicular spermatozoa, and testicular spermatozoa after in vitro maturation. We did not find significant differences in proteolytic profiles of seminal fluids from Wolffian duct sperm and ones from testicular sperm. Zymography revealed differences in spermatozoon extracts: Wolffian duct spermatozoon extracts were characterized by the presence of a broad proteolytic band ranging from 48 to 41 kDa, while testicular spermatozoon extracts did not show such activity until after in vitro maturation. The differences in amidase activity coincided with these results. It may not be the levels of proteolytic and anti-proteolytic activity per se, but the alterations in their interactions triggering a cascade of signaling events, that is crucial to the maturation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alavi SMH, Postlerová-Maňásková P, Hatef A, Pšenička M, Pĕknicová J, Inaba K, Ciereszko A, Linhart O (2014) Protease in sturgeon sperm and the effects of protease inhibitors on sperm motility and velocity. Fish Physiol Biochem 40:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Caballero J, Frenette G, Sullivan R (2011) Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int 2011:757194. doi:10.4061/2011/757194

    Article  Google Scholar 

  • Ciereszko A, Dabrowski K, Lin F, Doroshov SI (1994) Identification of trypsin-like activity in sturgeon spermatozoa. J Exp Zool 268:486–491

    Article  CAS  Google Scholar 

  • Ciereszko A, Dabrowski K, Ochkur SI (1996) Characterization of acrosin-like activity of lake sturgeon (Acipenser fulvescens) spermatozoa. Mol Reprod Dev 45:72–77

    Article  CAS  PubMed  Google Scholar 

  • Ciereszko A, Piros B, Dabrowski K, Kucharczyk D, Łuczyński MJ, Dobosz S, Glogowski J (1998) Serine proteinase inhibitors of seminal plasma of teleost fish: distribution of activity, electrophoretic profiles and relation to proteinase inhibitors of blood. J Fish Biol 53:1292–1305

    Article  CAS  Google Scholar 

  • Dacheux JL, Dacheux F (2014) New insights into epididymal function in relation to sperm maturation. Reproduction 147:R27–R42

    Article  CAS  PubMed  Google Scholar 

  • de Lamirande E, Leclerc P, Gagnon C (1997) Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod 3:175–194

    Article  PubMed  Google Scholar 

  • Dzyuba B, Cosson J, Boryshpolets S, Bondarenko O, Dzyuba V, Prokopchuk G, Gazo I, Rodina M, Linhart O (2014a) In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod Biol 14:160–163

    Article  PubMed  Google Scholar 

  • Dzyuba V, Dzyuba B, Cosson J, Boryshpolets S, Yamaner G, Kholodniy V, Rodina M (2014b) The antioxidant system of sterlet seminal fluid in testes and Wolffian ducts. Fish Physiol Biochem 40:1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Friedländer M, Jeshtadi A, Reynolds SE (2001) The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J Insect Physiol 47:245–255

    Article  PubMed  Google Scholar 

  • Gatti JL, Castella S, Dacheux F, Ecroyd H, Métayer S, Thimon V, Dacheux JL (2004) Post-testicular sperm environment and fertility. Anim Reprod Sci 82–83:321–339

    Article  PubMed  Google Scholar 

  • Hoar WS (1969) Reproduction. In: Hoar WS, Randall DJ (eds) Fish physiology. Volume III. Reproduction and growth. Bioluminescence, pigments, and poisons. Academic Press, New York, pp 1–72

    Chapter  Google Scholar 

  • Jamieson BGM (2009) Ultrastructure of spermatozoa: chondrostei. In: Jamieson BGM (ed) Reproductive biology and phylogeny of fishes (agnathans and bony fishes). Science, Enfield, pp 215–229

    Chapter  Google Scholar 

  • Kennedy WP, Kaminski JM, Van der Ven HH, Jeyndran RS, Reid DS, Blackwell J, Bielfeld P, Zaneveld WD (1989) A simple, clinical assay to evaluate the acrosin activity of human spermatozoa. J Androl 10:221–231

    Article  CAS  PubMed  Google Scholar 

  • Kotłowska M, Kowalski R, Glogowski J, Jankowski J, Ciereszko A (2005) Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo). Theriogenology 63:1667–1681

    Article  PubMed  Google Scholar 

  • Kowalski R, Glogowski J, Kucharczyk D, Goryczko K, Dobosz S, Ciereszko A (2003a) Proteolytic activity and electrophoretic profiles of proteases from seminal plasma of teleosts. J Fish Biol 63:1008–1019

    Article  CAS  Google Scholar 

  • Kowalski R, Wojtczak M, Glogowski J, Ciereszko A (2003b) Gelatinolytic and anti-trypsin activities in seminal plasma of common carp: relationship to blood, skin mucus and spermatozoa. Aquat Living Resour 16:438–444

    Article  Google Scholar 

  • Król J, Kowalski R, Demska-Zakęś K, Hliwa P, Glogowski J (2011) Proteolytic and anti-proteolytic activity in the seminal plasma of Eurasian perch (Perca fluviatilis L.) during the spawning period. Czech J Anim Sci 56:390–397

    Google Scholar 

  • LaFlamme BA, Wolfner MF (2013) Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 80:80–101

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F, Berger R, Weismann T, Patzner R (1997) Sperm motility and seminal fluid composition in the burbot, Lota lota. J Appl Ichthyol 13:113–119

    Article  Google Scholar 

  • Marengo SR (2008) Maturing the sperm: unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci 105:52–63

    Article  CAS  PubMed  Google Scholar 

  • Métayer S, Dacheux F, Dacheux JL, Gatti JL (2002) Comparison, characterization, and identification of proteases and protease inhibitors in epididymal fluids of domestic mammals. Matrix metalloproteinases are major fluid gelatinases. Biol Reprod 66:1219–1229

    Article  PubMed  Google Scholar 

  • Miyata H, Thaler CD, Haimo LT, Cardullo RA (2012) Protease activation and the signal transduction pathway regulating motility in sperm from the water strider Aquarius remigis. Cytoskeleton 69:207–220

    Article  CAS  PubMed  Google Scholar 

  • Mommens M, Wojtczak M, Ciereszko A, Babiak I (2008) Seminal plasma proteins of Atlantic halibut (Hippoglossus hippoglossus L.). Fish Physiol Biochem 34:349–355

    Article  CAS  PubMed  Google Scholar 

  • Morisawa S, Morisawa M (1988) Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J Exp Biol 136:13–22

    CAS  PubMed  Google Scholar 

  • Ohta H, Ikeda K, Izawa T (1997) Increases in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa. J Exp Zool 277:171–180

    Article  CAS  Google Scholar 

  • Piros B, Glogowski J, Kolman R, Rzemieniecki A, Domagala J, Horváth Á, Urbanyi B, Ciereszko A (2002) Biochemical characterization of Siberian sturgeon Acipenser baeri and sterlet Acipenser ruthenus milt plasma and spermatozoa. Fish Physiol Biochem 26:289–295

    Article  CAS  Google Scholar 

  • Richardson ME, Bodine AB, Froman DP, Thurston RJ (1988) Turkey acrosin. I. Isolation, purification, and partial characterization. Biol Reprod 38:645–651

    Article  CAS  PubMed  Google Scholar 

  • Schulz RW, de França LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T (2010) Spermatogenesis in fish. Gen Comp Endocr 165:390–411

    Article  CAS  PubMed  Google Scholar 

  • Siegel MS, Polakoski KL (1985) Evaluation of the human sperm proacrosin-acrosin system using gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophesis. Biol Reprod 32:713–720

    Article  CAS  PubMed  Google Scholar 

  • Sostaric E, Aalberts M, Gadella BM, Stout TAE (2008) The roles of the epididymis and prostasomes in the attainment of fertilizing capacity by stallion sperm. Anim Reprod Sci 107:237–248

    Article  CAS  PubMed  Google Scholar 

  • Thurston RJ, Korn N, Froman DP, Bodine AB (1993) Proteolytic enzymes in seminal plasma of domestic turkey (Meleagris gallopavo). Biol Reprod 48:393–402

    Article  CAS  PubMed  Google Scholar 

  • Uete T, Asahara M, Tsuchikura H (1970) A fluorometric determination of trypsin-like amidase activity and activity of trypsin inhibitors in serum. Clin Chem 16:322–330

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic—projects ‘CENAKVA’ (No. CZ.1.05/2.1.00/01.0024), ‘CENAKVA II’ (No. LO1205 under the NPU I program) and COST (No. LD14119), by the Grant Agency of the University of South Bohemia in Ceske Budejovice (No. 114/2013/Z) and by the Czech Science Foundation (No. P502/15-12034S). This publication was also supported by the project Postdok_BIOGLOBE (CZ.1.07/2.3.00/30.0032) co-financed by the European Social Fund and the state budget of the Czech Republic. Zymetech Company, Iceland, is gratefully acknowledged for the provision of cod trypsin. Authors appreciate very much Piter Gross and Udo Gross (Germany), and their colleagues for fish provided for the experiments. We greatly appreciate Dr. William L. Shelton for his valuable comments and help with editing the manuscript. The Lucidus Consultancy, UK, is gratefully acknowledged for the English correction and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriya Dzyuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzyuba, V., Słowińska, M., Cosson, J. et al. Characterization of proteolytic and anti-proteolytic activity involvement in sterlet spermatozoon maturation. Fish Physiol Biochem 42, 1755–1766 (2016). https://doi.org/10.1007/s10695-016-0255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0255-x

Keywords

Navigation