Skip to main content

Advertisement

Log in

Genetic diversity within vertebrate species is greater at lower latitudes

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The latitudinal gradient of species diversity is one of the oldest recognized patterns in biology. While the cause of the pattern remains debated, the global signal of greater diversity toward the tropics is widely established. Whether the pattern holds for genetic diversity within species, however, has received much less attention. We examine latitudinal variation of intraspecific genetic diversity by contrasting nucleotide distance within low- and high-latitude animal groups. Using mitochondrial DNA markers across 72 vertebrate species that together span six continents, two oceans, and 129 degrees of latitude, we found significantly greater genetic diversity at low latitudes within mammalian species, and trends consistent with this pattern in reptiles, amphibians, fish, and birds. The signal held even after removing species whose current geographic ranges include areas recently covered by glaciers during the late Pleistocene and which presumably have experienced colonization bottlenecks in high latitudes. Higher genetic diversity within species was found at low latitudes also for genera that do not possess higher species richness toward the tropics. Moreover, examination of a subset of species with sufficient sampling across a broad geographic range revealed that genetic variation demonstrates a typical gradient, with mid-latitude populations intermediate in genetic diversity between high and low latitude ones. These results broaden the pattern of the global latitudinal diversity gradient, to now include variation within species. These results are also concordant with other studies indicating that low latitude populations and species are on different evolutionary trajectories than high latitude ones, and we speculate that higher rates of evolution toward the equator are driving the pattern for genetic diversity within species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RI, Hadly EA (2010) High levels of gene flow in the California vole (Microtus californicus) are consistent across spatial scales. West N Am Nat 70:296–311

    Article  Google Scholar 

  • Allen AP, Gillooly JF, Savage VM et al (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci 103:9130–9135

    Article  PubMed  CAS  Google Scholar 

  • Antonovics J (2003) Toward community genomics? Ecology 84:598–601

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Borden WC, Krebs RA (2009) Phylogeography and postglacial dispersal of smallmouth bass (Micropterus dolomieu) into the Great Lakes. Can J Fish Aquat Sci 66:2142–2156

    Article  Google Scholar 

  • Bromham L, Cardillo M (2003) Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol 16:200–207

    Article  PubMed  CAS  Google Scholar 

  • Buckley LB, Davies TJ, Ackerly DD et al (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc Biol Sci Ser B 277:2131–2138

    Article  Google Scholar 

  • Chek AA, Austin JD, Lougheed SC (2003) Why is there a tropical-temperate disparity in the genetic diversity and taxonomy of species? Evol Ecol Res 5:69–77

    Google Scholar 

  • Clark PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quat Sci Rev 21:1–7

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    Article  PubMed  Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163:E1–E23

    Article  PubMed  Google Scholar 

  • Conroy CJ, Neuwald JL (2008) Phylogeographic study of the California vole, Microtus californicus. J Mammal 89:755–767

    Article  Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Eo SH, Wares JP, Carroll JP (2008) Population divergence in plant species reflects latitudinal biodiversity gradients. Biol Lett 4:382–384

    Article  PubMed  Google Scholar 

  • Food and Agriculture Organization (2010) The state of the world’s plant genetic resources for food and agriculture. United Nations, Rome

  • Freestone AL, Osman RW, Ruiz GM et al (2011) Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology 92:983–993

    Article  PubMed  Google Scholar 

  • Gillman LN, Keeling DJ, Ross HA et al (2009) Latitude, elevation and the tempo of molecular evolution in mammals. Proc R Soc Biol Sci Ser B 276:3353–3359

    Article  Google Scholar 

  • Gillooly JF, Allen AP, West GB et al (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Natl Acad Sci 102:140–145

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BA (2001) Ecology’s oldest pattern? Trends Ecol Evol 16:470

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 45:907–913

    Article  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hughes AL, Hughes MA (2007) Coding sequence polymorphism in avian mitochondrial genomes reflects population histories. Mol Ecol 16:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Daily GC, Ehrlich PR (1997) Population diversity: its extent and extinction. Science 278:689–692

    Article  PubMed  CAS  Google Scholar 

  • Hulton NRJ, Purves RS, Mcculloch RD et al (2002) The Last Glacial Maximum and deglaciation in southern South America. Quat Sci Rev 21:233–241

    Article  Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 3124:102–106

    Article  Google Scholar 

  • Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends Ecol Evol 22:250–257

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Clegg SM, Lovette IJ et al (2002) Phylogeographical approaches to assessing demographic connectivity between breeding and overwintering regions in a Nearctic-Neotropical warbler (Wilsonia pusilla). Mol Ecol 11:1605–1616

    Article  PubMed  CAS  Google Scholar 

  • Lessa EP, D’elia G, Pardinas UFJ (2010) Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 19:3031–3037

    Article  PubMed  Google Scholar 

  • Martin PR, Mckay JK (2004) Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58:938–945

    PubMed  Google Scholar 

  • Mclachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    Article  PubMed  Google Scholar 

  • Miller MJ, Bermingham E, Klicka J et al (2010) Neotropical birds show a humped distribution of within-population genetic diversity along a latitudinal transect. Ecol Lett 13:576–586

    Article  PubMed  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nevo E (2001) Genetic diversity. In: Levin SA (ed) Encyclopedia of Biodiversity, 3rd edn. Academic Press, San Diego, pp 195–213

    Chapter  Google Scholar 

  • Palmer MW (1994) Variation in species richness: towards a unification of hypotheses. Folia Geobot Phytotx 29:511–530

    Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46

    Article  Google Scholar 

  • Powell MG (2007) Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob Ecol Biogeogr 16:519–528

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stehli FG, Douglas RG, Newell ND (1969) Generation and maintenance of gradients in taxonomic diversity. Science 164:947–949

    Article  PubMed  CAS  Google Scholar 

  • Stevens RD (2004) Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of New World bat communities. J Biogeogr 31:665–674

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vellend M (2005) Species diversity and genetic diversity: parallel processes and correlated patterns. Am Nat 166:199–215

    Article  PubMed  Google Scholar 

  • Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328

    Article  PubMed  CAS  Google Scholar 

  • Wiens JJ, Graham CH, Moen DS et al (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: Treefrog trees unearth the roots of high tropical diversity. Am Nat 168:579–596

    Article  PubMed  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD et al (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Wright SD, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Natl Acad Sci 103:7718–7722

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Gillman LN, Ross HA et al (2010) Energy and the tempo of evolution in amphibians. Glob Ecol Biogeogr 19:733–740

    Google Scholar 

Download references

Acknowledgments

We thank Rodolfo Dirzo for valuable discussion and comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel I. Adams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, R.I., Hadly, E.A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol Ecol 27, 133–143 (2013). https://doi.org/10.1007/s10682-012-9587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9587-x

Keywords

Navigation