Skip to main content
Log in

Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Macroinvertebrates can be successfully used as biomonitors of pollutants and environmental health because some groups are sensitive whereas, others are relatively tolerant to pollutants. An issue of ongoing debate is what constitutes an appropriate group for biomonitoring; should the group represent species, genera or higher taxonomic levels? A phylogenetic framework can provide new insights into this issue. By developing phylogenies for chironomids and mayflies, this investigation shows that there is strong phylogenetic signal for pollution responses, and that phylogenetic nodes are common to tolerant and sensitive groups of species. A phylogenetic analysis of biotic indices developed for mayflies based on their response to organic pollution shows that mayfly families varied in pollution tolerance. In contrast, based on sediment zinc concentrations as an indicator of pollution tolerance, Australian chironomids tend to vary in tolerance at lower taxonomic levels. Published data on North American chironomids shows much of the signal for pollution responses is contained within genera rather than sub-families. Tools are now available to distinguish whether this signal reflects historical evolutionary constraints or environmental effects leading to common evolved responses. This suggests that ideally higher taxonomic levels should be used for biomonitoring when there are strong phylogenetic constraints at higher levels. Evolutionary considerations can therefore help to guide the development of macroinvertebrate biomonitors and provide insights into processes that produce sensitive and tolerant taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2):255–265. doi:10.1093/biomet/60.2.255

    Article  Google Scholar 

  • ANZECC/ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australia Water Association, Artarmon, NSW, Australia

    Google Scholar 

  • Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running waters. Water Res 17:333–347. doi:10.1016/0043-1354(83)90188-4

    Article  CAS  Google Scholar 

  • Bahrndorff S, Ward J, Pettigrove V, Hoffmann AA (2006) A microcosm test of adaptation and species specific responses to polluted sediments applicable to indigenous chironomids (Diptera). Environ Pollut 139(3):550–560. doi:10.1016/j.envpol.2005.05.024

    Article  CAS  Google Scholar 

  • Bailey RC, Norris RH, Reynoldson TB (2001) Taxonomic resolution of benthic macroinvertebrate communities in bioassessment. J North Am Benthol Soc 20:280–286. doi:10.2307/1468322

    Article  Google Scholar 

  • Barbour MT, Yoder CO (2000) The multimetric approach to bioassessment, as used in the United States of America. In: Wright JF, Sutcliffe DW, Furse MT (eds) Assessing the biological quality of fresh waters RIVPACS and other techniques. Freshwater Biological Association, The Ferry House, Far Sawrey, Ambleside, Cumbria, UK

    Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC

    Google Scholar 

  • Beavan L, Sadler J, Pinder C (2001) The invertebrate fauna of a physically modified urban river. Hydrobiologia 445(1–3):97–108. doi:10.1023/A:1017584105641

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37(suppl 1):D26–D31. doi:10.1093/nar/gkn723

    Article  CAS  Google Scholar 

  • Blomberg S, Theodore Garland J, Ives A (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745. doi:10.1111/j.0014-3820.2003.tb00285.x

    Google Scholar 

  • Buchwalter DB, Cain DJ, Martin CA, Xie L, Luoma SN, Garland T (2008) Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc Natl Acad Sci 105(24):8321–8326. doi:10.1073/pnas.0801686105

    Article  CAS  Google Scholar 

  • Carew ME, Pettigrove V, Cox RL, Hoffmann AA (2007a) DNA identification of urban Tanytarsini chironomids (Diptera:Chironomidae). J North Am Benthol Soc 26(4):587–600. doi:10.1899/06-120.1

    Article  Google Scholar 

  • Carew ME, Pettigrove V, Cox RL, Hoffmann AA (2007b) The response of Chironomidae to sediment pollution and other environmental characteristics in urban wetlands. Freshw Biol 52:2444–2462. doi:10.1111/j.1365-2427.2007.01840.x

    Article  CAS  Google Scholar 

  • Chessman BC (1995) Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family level identification and a biotic index. Aust J Ecol 20:122–129. doi:10.1111/j.1442-9993.1995.tb00526.x

    Article  Google Scholar 

  • Chessman BC (2003) New sensitivity grades for Australian river macroinvertebrates. Mar Freshw Res 54(2):95–103. doi:10.1071/MF02114

    Article  Google Scholar 

  • Chessman BC, McEvoy PK (1998) Towards diagnostic biotic indices for river macroinvertebrates. Hydrobiologia 364(2):169–182. doi:10.1023/A:1003142819625

    Article  Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15(5):615–636. doi:10.1111/j.1365-2583.2006.00672.x

    Article  CAS  Google Scholar 

  • Cliff A, Ord J (1981) Spatial processes: models and applications. Prion, London

    Google Scholar 

  • Cranston PS (1995) Systematics. In: Armitage PD, Cranston PS, Pinder LCV (eds) The Chironomidae: the ecology and biology of non-biting midges, 1st edn. Chapman and Hall, London, pp 31–52

    Google Scholar 

  • Diniz-Filho JAF, Sant’Ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262. doi:10.2307/2411294

    Article  Google Scholar 

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22(7):1367–1375. doi:10.1111/j.1420-9101.2009.01757.x

    Article  CAS  Google Scholar 

  • Groenendijk D, Lucker SMG, Plans M, Kraak MHS, Admiraal W (2002) Dynamics of metal adaptation in riverine chironomids. Environ Pollut 117(1):101–109

    Article  CAS  Google Scholar 

  • Growns JE, Davis JA, Cheal F, Schmidt LG, Rosich RS, Bradley SJ (1992) Multivariate pattern analysis of wetland invertebrate communities and environmental variables in Western Australia. Aust J Ecol 17:275–288. doi:10.1111/j.1442-9993.1992.tb00809.x

    Article  Google Scholar 

  • Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a randomly evolving environment. Evolution 62:1965–1977

    Google Scholar 

  • Hebert PND, Cywinska A, Ball SL, DeWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond B 270:313–321. doi:10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Hewlett R (2000) Implications of taxonomic resolution and sample habitat for stream classification at a broad geographical scale. J North Am Benthol Soc 19:352–361. doi:10.2307/1468077

    Article  Google Scholar 

  • Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hilsenhoff W (1977) Use of arthropods to evaluate water quality of streams. Wisconsin Department of Natural Resources, Madison

    Google Scholar 

  • Hilsenhoff W (1982) Using a biotic index to evaluate water quality in streams. Wisconsin Department of Natural Resources, Madison

    Google Scholar 

  • Hilsenhoff W (1987) An improved biotic index of organic stream pollution. Great Lakes Entomol 20(1):31–40

    Google Scholar 

  • Hilsenhoff W (1988) Rapid field assessment of organic pollution with a family-level biotic index. J North Am Benthol Soc 7(1):65–68

    Article  Google Scholar 

  • Jones F (2008) Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environ Rev 16:45–69. doi:10.1139/A07-010

    Article  Google Scholar 

  • Kembel S, Ackerly D, Blomberg S, Cornwell W, Cowan P (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics In press. doi:10.1093/bioinformatics/btq166

  • King RS, Richardson CJ (2002) Evaluating sub-sampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. J North Am Benthol Soc 21(1):150–171. doi:10.2307/1468306

    Article  Google Scholar 

  • King RS, Richardson CJ (2003) Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environ Manag 31(6):795–809. doi:10.1007/s00267-002-0036-4

    Article  Google Scholar 

  • Kristensen P, Bøgestrand J (1996) Surface water quality monitoring. EEA (European Environomental Angency), National Environmental Research Institute, Copenhagen

    Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Casgrain P, Gurevitch J (2004) Effects of spatial structures on the results of field experiments. Ecology 85(12):3202–3214. doi:10.1890/03-0677

    Article  Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology-the benefits of genus and species level identifications. J North Am Benthol Soc 20:287–289. doi:10.2307/1468323

    Article  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11(10):995–1003. doi:10.1111/j.1461-0248.2008.01229.x

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2007) Mesquite: a modular system for evolutionary analysis. Version 2.0. Accessed 30 Oct 2010

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73 http://mesquiteproject.org

  • Maher WA, Norris RH (1990) Water quality assessment programs in Australia deciding what to measure, and how and where to use bioindicators. Environ Monit Assess 14:115–130. doi:10.1007/BF00677912

    Article  CAS  Google Scholar 

  • Mandaville SM (2002) Benthic macroinvertebrates in freshwaters—taxa tolerance values, metrics and protocols. Halifax, Canada

  • Metzeling L, Robinson D, Perriss S, Marchant R (2002) Temporal persistence of benthic invertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models. Mar Freshw Res 53(8):1223–1234. doi:10.1071/MF02071

    Article  Google Scholar 

  • Morgan AJ, Kille P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41(4):1085–1096. doi:10.1021/es061992x

    Article  CAS  Google Scholar 

  • Ogden TH, Gattolliat JL, Sartori M, Staniczek AH, Soldán T, Whiting MF (2009) Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data. Syst Entomol 34(4):616–634. doi:10.1111/j.1365-3113.2009.00488.x

    Article  Google Scholar 

  • Pettigrove V, Hoffmann A (2005) A field-based microcosm method to assess the effect of polluted urban stream sediments on aquatic macroinvertebrates. Environ Toxicol Chem 24(1):170–180. doi:10.1897/03-459.1

    Article  CAS  Google Scholar 

  • Plafkin JK, Barbour MT, Porter KD, Gross SK, Hughes RM (1989) Rapid bioassessment protocols for the use in streams and rivers: benthic macroinvertebrates and fish. Environmental Protection Agency, USA

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond A (2007) Tracer v1.4, http://beast.bio.ed.ac.uk/Tracer. Accessed 30 Oct 2010

  • Resh VH, Unzicker JD (1975) Water quality monitoring and aquatic organisms: the importance of species identification. J Water Pollut Control Fed 47:9–19

    CAS  Google Scholar 

  • Resh VH, Norris RN, Barbour MT (1995) Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Aust J Ecol 20(1):108–121. doi:10.1111/j.1442-9993.1995.tb00525.x

    Article  Google Scholar 

  • Riva-Murray K, Bode RW, Phillips PJ, Wall GL (2002) Impact source determination with biomonitoring data in New York state: concordance with environmental data. Northeastern Naturalist 9(2):127–162. doi:10.1656/1092-6194(2002)009[0127:ISDWBD]2.0.CO;2

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Ruse LP (1996) Multivariate techniques relating macroinvertebrate and environmental data from a river catchment. Water Res 30(12):3017–3024. doi:10.1016/S0043-1354(96)00217-5

    Article  CAS  Google Scholar 

  • Simpson JC, Norris RH (2000) Biological assessment of river quality: development of AUSRIVAS models and outputs. In: Wright JF, Sutcliffe DW, Furse MT (eds) Assessing the biological quality of fresh waters RIVPACS and other techniques. Freshwater Biological Association, The Ferry House, Far Sawrey, Ambleside, Cumbria, UK, pp 125–142

    Google Scholar 

  • Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8(4):179–187. doi:10.1016/s1360-1385(03)00047-5

    Article  CAS  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitive approaches to niche evolution. Evolution 62(11):2868–2883. doi:10.1111/j.1558-5646.2008.00482.x

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Syst 36:519–539

    Article  Google Scholar 

  • Williams SE, Williams YM, VanDerWal J, Isaac JL, Shoo LP, Johnson CN (2009) Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proc Natl Acad Sci USA 106(Supplement 2):19737–19741. doi:10.1073/pnas.0901640106

    Article  CAS  Google Scholar 

  • Wright JD, Armitage PD, Furse MT (1989) Prediction of invertebrate communities using stream measurements. Regulated Rivers 4:147–155. doi:10.1002/rrr.3450040207

    Article  Google Scholar 

Download references

Acknowledgments

Our study on pollution monitoring is supported through the Victorian Center for Applied Pollution Investigation and Monitoring, funded by the Victorian Department of Innovation, Infrastructure and Regional Development as well as Melbourne Water and the Department of Primary Industry. We are also supported by a Linkage grant and Fellowships from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ary A. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carew, M.E., Miller, A.D. & Hoffmann, A.A. Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology 20, 595–606 (2011). https://doi.org/10.1007/s10646-011-0615-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0615-3

Keywords

Navigation