Skip to main content

Advertisement

Log in

Dibutyltin(IV) complexes containing arylazobenzoate ligands: chemistry, in vitro cytotoxic effects on human tumor cell lines and mode of interaction with some enzymes

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Dibutyltin(IV) complexes of composition Bu2Sn(LH)2, where LH is a carboxylate residue derived from 2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L1H) with water molecule (1), 4-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L2H) (2) and 4-[(E)-(4-hydroxy-5-methylphenyl)diazenyl]benzoate (L3H) (3), were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques. A full characterization was accomplished from the crystal structure of complex 1. The molecular structures and geometries of the complexes (1a i.e. 1 without water molecule and 3) were fully optimized using the quantum mechanical method (PM6). Complexes 1 and 3 were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. Compound 3 is found to be four times superior for the A498, EVSA-T and MCF-7 cell lines than CCDP (cisplatin), and four, eight and sixteen times superior for the A498, H226 and MCF-7 cell lines, respectively, compared to ETO (etoposide). The mechanistic role of cytotoxic activity of test compounds is discussed in relation to the theoretical results of docking studies with some key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II associated with the propagation of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abu-Surrah AS, Kettunen M (2006) Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr Med Chem 13:1337–1357

    Article  CAS  PubMed  Google Scholar 

  2. Barnes KR, Lippard SJ (2004) Metal complexes in tumor diagnosis and as anticancer agents. Met Ions Biol Syst 42:143–177

    CAS  PubMed  Google Scholar 

  3. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18

    Article  CAS  PubMed  Google Scholar 

  4. Yang P, Guo M (1999) Interactions of organometallic anticancer agents with nucleotides and DNA. Coord Chem Rev 185–186:189–211

    Article  Google Scholar 

  5. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci USA 100:3611–3616

    Article  CAS  PubMed  Google Scholar 

  6. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer. Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  7. Sigel A, Sigel H (2004) Metal ions in biological systems. Marcel Dekkar, New York

    Book  Google Scholar 

  8. Jakupec M, Keppler BK (2004) In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  9. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Ruthenium antimetastatic agents. Curr Top Med Chem 4:1525–1535

    Article  CAS  PubMed  Google Scholar 

  10. Sigel A, Sigel H (2005) Metal ions in biological systems. Wiley, New York

    Google Scholar 

  11. Gielen M, Tiekink ERT (eds) (2005) Metallotherapeutic drug and metal-based diagnostic agents. Wiley, Chichester, England

    Google Scholar 

  12. Ang WH, Dyson PJ (2006) Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy (review). Eur J Inorg Chem 4003–4018

  13. Bruijnincx PCA, Sadler PJ (2008) New trends for metal complexes with anticancer activity. Curr Opin Chem Biol 12:197–206

    Article  CAS  PubMed  Google Scholar 

  14. Tiekink ERT (2008) Anti-cancer potential of gold complexes. Inflammopharmacol 16:138–142

    Article  CAS  Google Scholar 

  15. Hadjikakou SK, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253:235–249

    Article  CAS  Google Scholar 

  16. Tiekink ERT (1994) The rich diversity in tin carboxylate structures. Trends Organomet Chem 1:71–116

    Google Scholar 

  17. Tiekink ERT (1991) Structural chemistry of organotin carboxylates: a review of the crystallographic literature. Appl Organomet Chem 5:1–21

    Article  CAS  Google Scholar 

  18. Chandrasekhar V, Nagendran S, Baskar V (2002) Organotin assemblies containing Sn–-O bonds. Coord Chem Rev 235:1–52

    Article  CAS  Google Scholar 

  19. Buntine MA, Hall VJ, Kosovel FJ, Tiekink ERT (1998) Influence of crystal packing on molecular geometry: a crystallographic and theoretical investigation of selected diorganotin systems. J Phy Chem A 102:2472–2482

    Article  CAS  Google Scholar 

  20. Willem R, Verbruggen I, Gielen M, Biesemans M, Mahieu B, Basu Baul TS, Tiekink ERT (1998) Correlating Mossbauer and solution- and solid-state 117Sn NMR data with X-ray diffraction structural data of triorganotin 2-[(E)-2-(2-Hydroxy-5-methylphenyl)-1-diazenyl]benzoates. Organometallics 17:5758–5766

    Article  CAS  Google Scholar 

  21. Dakternieks D, Duthie A, Smyth DR, Stapleton CPD, Tiekink ERT (2003) Steric control over molecular structure and supramolecular association exerted by tin- and ligand-bound groups in diorganotin carboxylates. Organometallics 22:4599–4603

    Article  CAS  Google Scholar 

  22. Prabusankar G, Murugavel R (2004) Hexameric organotincarboxylates with cyclic and drum structures. Organometallics 23:5644–5647

    Article  CAS  Google Scholar 

  23. Gielen M, Tiekink ERT (eds) (2005) Metallotherapeutic drug and metal-based diagnostic agents: 50Sn Tin compounds and their therapeutic potential. Wiley, Chichester, pp 421–439 (and references therein)

    Google Scholar 

  24. Basu Baul TS, Basu S, de Vos D, Linden A (2009) Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Invest New Drugs 27:419–431

    Article  CAS  Google Scholar 

  25. Basu Baul TS, Masharing C, Ruisi G, Jirásko R, Holčapek M, de Vos D, Wolstenholme D, Linden A (2007) Self-assembly of extended Schiff base amino acetate skeletons, 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}phenylpropionate and 2-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}phenylpropionate skeletons incorporating organotin(IV) moieties: synthesis, spectroscopic characterization, crystal structures, and in vitro cytotoxic activity. J Organomet Chem 692:4849–4862

    Article  CAS  Google Scholar 

  26. Basu Baul TS, Paul A, Pellerito L, Scopelliti M, Singh P, Verma P, de Vos D (2009) Triphenyltin(IV) 2-[(E)-2-(aryl)-1-diazenyl]benzoates as anticancer drugs: synthesis, structural characterization, in vitro cytotoxicity and study of its influence towards the mechanistic role of some key enzymes. Invest New Drugs. doi:10.1007-s10637-009-9293-x

    Google Scholar 

  27. Corral E, Hotze ACG, den Dulk H, Leczkowska A, Rodger A, Hannon MJ, Reedijk J (2009) Ruthenium polypyridyl complexes and their modes of interaction with DNA: is there a correlation between these interactions and the antitumor activity of the compounds? J Biol Inorg Chem 14:439–448

    Article  CAS  PubMed  Google Scholar 

  28. Basu Baul TS, Rynjah W, Willem R, Biesemans M, Verbruggen I, Holčapek M, de Vos D, Linden A (2004) Dibutyltin(IV) complexes of the 5-[(E)-2-(Aryl)-1-diazenyl]-2-hydroxybenzoic acid ligand: an investigation of structures by X-ray diffraction, solution and solid state tin NMR, electrospray ionisation MS and assessment of in vitro cytotoxicity. J Organomet Chem 689:4691–4701

    Article  Google Scholar 

  29. Basu Baul TS, Rynjah W, Rivarola E, Lyčka A, Holčapek M, Jirásko R, de Vos D, Butcher RJ, Linden A (2006) Synthesis and characterization of bis[dicarboxylatotetraorganodistannoxane] units involving 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids: an investigation of structures by X-ray diffraction, NMR, electrospray ionization MS and assessment of in vitro cytotoxicity. J Organomet Chem 691:4850–4862

    Article  Google Scholar 

  30. Basu Baul TS, Paul A, Arman HD, Tiekink ERT (2008) 2-[(E)-(5-tert-Butyl-2-hydroxyphenyl)diazenyl]benzoic acid. Acta Crystallogr Sect. E 64:o2125

    Article  Google Scholar 

  31. Boyd MR (1989) Status of the NCI preclinical antitumor drug discovery screen. Principles and practice of oncology, vol 3. Lippincott, Philadelphia, pp 1–12

    Google Scholar 

  32. Keepers YP, Pizao PR, Peters GJ, Ark-Otte JV, Winograd B, Pinedo HM (1991) Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 27:897–900

    Article  CAS  PubMed  Google Scholar 

  33. Higashi T (1995) ABSCOR. Rigaku Corporation, Tokyo, Japan

    Google Scholar 

  34. Beurskens PT, Admiraal G, Beurskens G, Bosman WP, García-Granda S, Smits JMM, Smykalla C (1992) The DIRDIF program system, technical report of the Crystallography Laboratory. University of Nijmegen, The Netherlands

    Google Scholar 

  35. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  CAS  Google Scholar 

  36. Johnson CK (1976) ORTEP II, Report ORNL-5136. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  37. Brandenburg K (2006) DIAMOND. Crystal impact GbR, Bonn, Germany

  38. Stewart JJP (1989) Optimization of parameters for semiempirical methods: I. Method. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  39. Stewart JJP (1989) Optimization of parameters for semiempirical methods: II. Applications. J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  40. Stewart JJP (1991) Optimization of parameters for semiempirical methods: III. Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J Comput Chem 12:320–341

    Article  CAS  Google Scholar 

  41. Stewart JJP (2004) Optimization of parameters for semiempirical methods IV. Extension of MNDO, AM1, and PM3 to more main group elements. J Mol Model 10:155–164

    Article  CAS  PubMed  Google Scholar 

  42. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed  Google Scholar 

  43. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Phys Comm 167:103–128

    Article  CAS  Google Scholar 

  44. ArgusLab 4.0.1: Thompson MA, Planaria Software LLC, Seattle, WA, http://www.argusLab.com

  45. Protein Data Bank, <http://www.rcsb.org/pdb/>

  46. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26

    Article  CAS  PubMed  Google Scholar 

  47. Basu Baul TS, Pyke SM, Sarma KK, Tiekink ERT (1996) Crystal and molecular structure of aquatriphenyltin 2-(3-formyl-4-hydroxyphenylazo)benzoate. Main Group met. Chem. 19:807–814

    CAS  Google Scholar 

  48. Basu Baul TS, Dhar S, Pyke SM, Tiekink ERT, Rivarola E, Butcher R, Smith FE (2001) Synthesis and characterization of triorganotin(IV) complexes of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids. Crystal and molecular structures of a series of triphenyltin 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoates (aryl = phenyl, 2-methylphenyl, 3-methylphenyl and 4-methoxyphenyl). J Organomet Chem 633:7–17

    Article  CAS  Google Scholar 

  49. Basu Baul TS, Dhar S, Rivarola E, Smith FE, Butcher R, Song X, McCain M, Eng G (2003) Synthesis and characterization of some dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) compounds. Toxicity studies of di- and tri-organotin complexes on the second instar of Aedes aegypti mosquito larvae. Appl Organomet Chem 17:261–267

    Article  Google Scholar 

  50. Basu Baul TS, Rynjah W, Rivarola E, Pettinary C, Linden A (2005) Synthesis and characterization of the first diorganotin(IV) complexes containing mixed arylazobenzoic acids and having skew trapezoidal bipyramidal geometry. J Organomet Chem 690:1413–1421

    Article  CAS  Google Scholar 

  51. Otera J, Hinoishi T, Kawabe Y, Okawara R (1981) 119Sn, 13C, and 1H NMR studies on six-coordinate dimethyltin bis(chelate) compounds. Chem Lett 10:273–274

    Article  Google Scholar 

  52. Lockhart TP, Manders WF (1986) Structure determination by NMR spectroscopy. Dependence of |2 J(119Sn, 1H)| on the Me-Sn-Me angle in methyltin(IV) compounds. Inorg Chem 25:892–895

    Article  CAS  Google Scholar 

  53. Lockhart TP (1988) Solution and solid-state structures of di-n-butyltin 3-thiopropionate. X-ray crystal structure determination of the cyclic hexamer. Organometallics 7:1438–1443

    Article  CAS  Google Scholar 

  54. Barbieri R, Huber F, Pellerito L, Ruisi G, Silvestri A (1998) In: Smith PJ (ed) Chemistry of tin: 119Sn Mössbauer studies on tin compounds. Blackie, London, pp 496–540

    Google Scholar 

  55. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman & Hill, London

    Google Scholar 

  56. Donaldson JD, Grimes SM, Pellerito L, Girasolo MA, Smith PJ, Cambria A, Famà M (1987) Thermal behaviour, 119Sn Mössbauer and IR spectroscopic studies of some diorganotin(IV)carbohydrates. Polyhedron 6:383–386

    Article  CAS  Google Scholar 

  57. Sham TK, Bancroft GM (1975) Tin-119 Mossbauer quadrupole splittings for distorted dimethyltin(IV) structures. Inorg Chem 14:2281–2283

    Article  CAS  Google Scholar 

  58. Bancroft GM, Kumar Das VG, Sham TK, Clark MG (1976) Additive model for 119Sn Mössbauer quadrupole splitting in five-co-ordinate organotin(IV) compounds. J Chem Soc, Dalton Trans 643–654

  59. Szorcsik A, Nagy L, Sletten J, Szalontai G, Kamu E, Fiore T, Pellerito L, Kalman E (2004) Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono- and dicarboxylic acids. J Organomet Chem 689:1145–1154

    Article  CAS  Google Scholar 

  60. Szorcsik A, Nagy L, Deak A, Scopelliti M, Fekete ZA, Csaszar A, Pellerito C, Pellerito L (2004) Preparation and structural studies on the tBu2Sn(IV) complexes with aromatic mono- and dicarboxylic acids containing hetero {N} donor atom. J Organomet Chem 689:2762–2769

    Article  CAS  Google Scholar 

  61. Pelizzi C, Pelizzi G, Tarasconi P (1983) Synthesis and characterization by IR spectroscopy and x-ray diffraction of a quinazoline-complex of dibutyldichlorotin(IV). Polyhedron 2:145–147

    Article  CAS  Google Scholar 

  62. Di Nicola C, Galindo A, Hanna JV, Marchetti F, Pettinari C, Pettinari R, Rivarola E, Skelton BW, White AH (2005) Synthesis and spectroscopic and X-ray structural characterization of R2SnIV-oxydiacetate and -iminodiacetate complexes. Inorg Chem 44:3094–3102

    Article  PubMed  Google Scholar 

  63. Xueqing S, Zhiqiang Y, Qinglan X, Jinshan L (1998) Synthesis, structures and in vitro antitumor activity of some germanium-substituted di-n-butyltin dipropionates. J Organomet Chem 566:103–110

    Article  Google Scholar 

  64. Ng SW, Chen W, Zainudin A, Kumar Das VG, Yip W-H, Wang R-J, Mak TCW (1991) Crystal structure of trans-C2SnO5 pentagonal bipyramidal dibutylbis(phenylacetato)tin(IV) hydrate. J Crystallogr Spectros Res 21:39–43

    Article  CAS  Google Scholar 

  65. Dakternieks D, Kuan FS, Tiekink ERT (2001) X-ray structure of di(Acetato)-aqua-di(cyclohexyl)tin(IV). Main Group Met Chem 24:291–292

    CAS  Google Scholar 

  66. Mahon MF, Molloy KC, Stanley JE, Rankin DWH, Robertson HE, Johnson BF (2005) Atmospheric pressure deposition of fluorine-doped SnO2 thin films from organotin fluorocarboxylate precursors. Appl Organomet Chem 19:658–671

    Article  CAS  Google Scholar 

  67. Molloy KC (1989) In: Hartley FR (ed) Bioorganotin compounds in the chemistry of metal carbon bond, vol 5. Wiley, New York (Chapter 11)

    Google Scholar 

  68. Hook JM, Linahan BM, Taylor RL, Tiekink ERT, Von Gorkom N, Webster LK (1994) Phenyltin diethyldithiocarbamates: solid state and solution structures and in vitro anti-tumour activity. Main Group Met Chem 17:293–311

    CAS  Google Scholar 

  69. Willem R, Dalil H, Biesemans M, Martins JC, Gielen M (1999) The reaction of di-n-butyltin oxide with hexafluoro-2, 2-bis(4-carboxyphenyl)propane. Appl Organomet Chem 13:605–608

    Article  CAS  Google Scholar 

  70. Danish M, Alt Helmut G, Badshah A, Ali S, Mazhar M, Nazar-ul-Islam (1995) Organotin esters of 3-(2-furanyl)-2-propenoic acid: their characterization and biological activity. J Organomet Chem 486:51–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Department of Science & Technology, New Delhi, India (Grant No.SR/S1/IC-03/2005,TSBB and SR/S1/OC-11A/2006, PS), of the Università degli Studi di Palermo, Italy (Grants ORPA079E5M and ORPA0737W2) and the University Grants Commission, New Delhi, India through SAP-DSA, Phase-III, are gratefully acknowledged. The in vitro cytotoxicity experiments were carried out by Ms. P. F. van Cuijk in the Laboratory of Translational Pharmacology, Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands, under the supervision of Dr. E. A. C. Wiemer and Prof. Dr. G. Stoter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar S. Basu Baul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Unit cell contents viewed in projection down the c-axis for 1 (GIF 138 kb)

High resolution image (TIFF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu Baul, T.S., Paul, A., Pellerito, L. et al. Dibutyltin(IV) complexes containing arylazobenzoate ligands: chemistry, in vitro cytotoxic effects on human tumor cell lines and mode of interaction with some enzymes. Invest New Drugs 29, 285–299 (2011). https://doi.org/10.1007/s10637-009-9360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9360-3

Keywords

Navigation