Skip to main content
Log in

Snakes on an island: independent introductions have different potentials for invasion

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Snakes introduced to islands can be devastating to naïve native fauna. However, introduced populations must establish before range expansion (invasion) can occur. The factors that can determine successful invasion are those associated with the introduction event (e.g., characteristics of the founding population), the location (e.g., suitable environment and prey availability) and the species (e.g. life history characteristics). Here, we collected morphometric, ecological and genetic data on the recently introduced California Kingsnake (Lampropeltis californiae) in Gran Canaria. We found that snakes occurring at two locations a few 10 s of km apart do not represent the same population. Genetic analyses confirmed significant genetic difference (F ST  = 0.184; D est  = 0.341), and that despite being inbred (F is  = 0.245–0.257) the populations had high levels of diversity (H o  = 0.485–0.490; allelic richness = 4.875–6.364). Snakes at the different Gran Canaria locations were significantly different in morphology (colouration, mass, length and age), fitness (egg production) and diet (rodents, skinks, lizards and geckos), supporting a hypothesis of separate founding groups in combination with local environmental heterogeneity leading to variation between these populations. We concluded that one population was more successful than the other in reproduction and recruitment, and may be having a greater impact on endemic reptiles. We recommend greater eradication effort for this population, as well as monitoring of local fauna at all locations to access the impact of predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barahona F, Evans SE, Mateo JA, Garcia-Marquez M, Lopez-Jurado LF (2000) Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. J Zool 250:373–388

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) GENETIX version 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR. 4.02 edn. Université de Montpellier II, Montpellier (France)

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300

    Google Scholar 

  • Bilgin R (2007) Kgtests: a simple Excel Macro program to detect signatures of population expansion using microsatellites. Mol Ecol Notes 7:416–417. doi:10.1111/j.1471-8286.2006.01671.x

    Article  CAS  Google Scholar 

  • Blackburn TM et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi:10.1016/j.tree.2011.03.023

    Article  PubMed  Google Scholar 

  • Bock DG, Zhan A, Lejeusne C, MacIsaac HJ, Cristescu ME (2011) Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. Mol Ecol 20:503–516. doi:10.1111/j.1365-294X.2010.04971.x

    Article  CAS  PubMed  Google Scholar 

  • Bohn T, Sandlund OT, Amundsen PA, Primicerio R (2004) Rapidly changing life history during invasion. Oikos 106:138–150. doi:10.1111/j.0030-1299.2004.13022.x

    Article  Google Scholar 

  • Bonnet X, Shine R, Naulleau G, Vacher-Vallas M (1998) Sexual dimorphism in snakes: different reproductive roles favour different body plans. Proc Royal Soc B Biol Sci 265:179–183

    Article  Google Scholar 

  • Cabrera-Pérez MÁ, Gallo-Barneto R, Esteve I, Patiño-Martínez C, López-Jurado LF (2012) The management and control of the California kingsnake in Gran Canaria (Canary Islands): Project LIFE + Lampropeltis. Aliens: The Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group: 20–28

  • Carranza S, Arnold EN, Mateo JA, Geniez P (2002) Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 23:244–256. doi:10.1016/S1055-7903(02)00024-6

    Article  CAS  PubMed  Google Scholar 

  • Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358. doi:10.1111/j.1365-294X.2010.04860.x

    Article  PubMed  Google Scholar 

  • Colautti R, Grigorovich I, MacIsaac H (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037. doi:10.1007/s10530-005-3735-y

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557. doi:10.1111/j.1755-0998.2009.02801.x

    Article  PubMed  Google Scholar 

  • Detwiler J, Criscione C (2014) Recently introduced invasive geckos quickly reach population genetic equilibrium dynamics. Biological Invasions: 1–15. doi:10.1007/s10530-014-0694-1

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N-e) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

  • Dubey S, Sumner J, Pike DA, Keogh JS, Webb JK, Shine R (2011) Genetic connectivity among populations of an endangered snake species from Southeastern Australia (Hoplocephalus bungaroides, Elapidae). Ecol Evol 1:218–227. doi:10.1002/ece3.25

    Article  PubMed Central  PubMed  Google Scholar 

  • Feiner ZS, Aday DD, Rice JA (2012) Phenotypic shifts in white perch life history strategy across stages of invasion. Biol Invasions 14:2315–2329. doi:10.1007/s10530-012-0231-z

    Article  Google Scholar 

  • Fritts TH, Rodda GH (1998) The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu Rev Ecol Syst 29:113–140. doi:10.1146/annurev.ecolsys.29.1.113

    Article  Google Scholar 

  • Gautschi B, Widmer A, Joshi J, Koella JC (2002) Increased frequency of scale anomalies and loss of genetic variation in serially bottlenecked populations of the dice snake, Natrix tessellata. Conserv Genet 3:235–245. doi:10.1023/a:1019924514465

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guicking D, Griffiths RA, Moore RD, Joger U, Wink M (2006) Introduced alien or persecuted native? Resolving the origin of the viperine snake (Natrix maura) on Mallorca. Biodivers Conserv 15:3045–3054. doi:10.1007/s10531-005-4878-y

    Article  Google Scholar 

  • Herben T (2005) Species pool size and invasibility of island communities: a null model of sampling effects. Ecol Lett 8:909–917

    Article  Google Scholar 

  • Hubbs B (2009) Common Kingsnakes: a natural history of Lampropeltis getula. Tricolor books

  • Jackson K, Kley NJ, Brainerd EL (2004) How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes : Colubridae). Zoology 107:191–200. doi:10.1016/j.zool.2004.06.001

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi:10.1111/j.1755-0998.2009.02787.x

    Article  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  • Juan C, Emerson BC, Oromı P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 15:104–109. doi:10.1016/S0169-5347(99)01776-0

    Article  PubMed  Google Scholar 

  • King RB (1989) Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol J Linn Soc 38:133–154. doi:10.1111/j.1095-8312.1989.tb01570.x

    Article  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv Biol 21:1612–1625. doi:10.1111/j.1523-1739.2007.00826.x

    Article  PubMed  Google Scholar 

  • Kolbe JJ, VanMiddlesworth PS, Losin N, Dappen N, Losos JB (2012) Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA. Ecology and Evolution 2:1503–1516. doi:10.1002/ece3.263

    Article  PubMed Central  PubMed  Google Scholar 

  • Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol Invasions 5:293–312. doi:10.1023/B:BINV.0000005574.15074.66

    Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545. doi:10.1007/s10530-005-5845-y

    Article  Google Scholar 

  • Liu X, Li X, Liu Z, Tingley R, Kraus F, Guo Z, Li Y (2014) Congener diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecology Letters

  • López-Jurado LF (1992) Synopsis of the canarian herpetofauna. Revista Española de Herpetología (Madrid) 6:107–118

    Google Scholar 

  • López-Jurado LF (1998) Chalcides sexlineatus Steindachner, 1891—Gestreifter Kanarenskink, Gran Canaria-Skink. In: Bischoff W (ed) Die Reptilien der Kanarischen Inseln, der Selvagens-Inseln und des Madeira-Archipels. Handbuch der Reptilien und Amphibien Europas. Quelle-Verlag, Wiebelsheim, pp 201–213

    Google Scholar 

  • Marshall JCJ, Kingsbury BA, Minchella DJ (2009) Microsatellite variation, population structure, and bottlenecks in the threatened copperbelly water snake. Conserv Genet 10:465–476. doi:10.1007/s10592-008-9624-z

    Article  Google Scholar 

  • Martinez-Morales MA, Cuaron AD (1999) Boa constrictor, an introduced predator threatening the endemic fauna on Cozumel Island, Mexico. Biodivers Conserv 8:957–963. doi:10.1023/a:1008815004072

    Article  Google Scholar 

  • Melbourne BA, Hastings A (2009) Highly variable spread rates in replicated biological invasions: fundamental limits to predictability. Science 325:1536–1539. doi:10.1126/science.1176138

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nogales M, Rodriguez-Luengo JL, Marrero P (2006) Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mammal Rev 36:49–65. doi:10.1111/j.1365-2907.2006.00077.x

    Article  Google Scholar 

  • Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Div Distribut 19:988–995. doi:10.1111/ddi.12073

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mole Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petter-Rousseaux A (1953) Recherches sur la croissance et le cycle d’activité testiculaires de Natrix natrix helvetica (Lacépède). Terre et Vie 4:175–223

    Google Scholar 

  • Pleguezuelos JM, Feriche M, Reguero S, Santos X (2010) Patterns of tail breakage in the ladder snake (Rhinechis scalaris) reflect differential predation pressure according to body size. Zoology 113:269–274. doi:10.1016/j.zool.2010.03.002

    Article  PubMed  Google Scholar 

  • Pyron RA, Burbrink FT (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Mol Ecol 18:3443–3457. doi:10.1111/j.1365-294X.2009.04292.x

    Article  CAS  Google Scholar 

  • R-Development-Core-Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (Version-1.2)—population-genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Reich DE, Feldman MW, Goldstein DB (1999) Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16:453–466

    Article  CAS  Google Scholar 

  • Reynolds RG, Puente-Rolon AR, Reed RN, Revell LJ (2013) Genetic analysis of a novel invasion of Puerto Rico by an exotic constricting snake. Biol Invasions 15:953–959. doi:10.1007/s10530-012-0354-2

    Article  Google Scholar 

  • Rodriguez D, Forstner MRJ, McBride DL, Densmore LD, Dixon JR (2012) Low genetic diversity and evidence of population structure among subspecies of Nerodia harteri, a threatened water snake endemic to Texas. Conserv Genet 13:977–986. doi:10.1007/s10592-012-0346-x

    Article  Google Scholar 

  • Row JR, Blouin-Demers G, Lougheed SC (2010) Habitat distribution influences dispersal and fine-scale genetic population structure of eastern foxsnakes (Mintonius gloydi) across a fragmented landscape. Mol Ecol 19:5157–5171. doi:10.1111/j.1365-294X.2010.04872.x

    Article  PubMed  Google Scholar 

  • Shine R, Goiran C, Shine T, Fauvel T, Brischoux F (2012) Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol J Linnean Soc 107:824–832. doi:10.1111/j.1095-8312.2012.01971.x

    Article  Google Scholar 

  • Shine R, Olsson MM, Moore IT, LeMaster MP, Mason RT (1999) Why do male snakes have longer tails than females? Proc Royal Soc B Biol Sci 266:2147–2151

    Article  Google Scholar 

  • Steen DA et al (2014) Copperheads are common when kingsnakes are not: relationships between the abundances of a predator and one of their prey. Herpetologica 70:69–76

    Article  Google Scholar 

  • Toonen R, Hughes S (2001) Increased throughput for fragment analysis on ABI Prism 377 Automated Sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1324

    CAS  PubMed  Google Scholar 

  • Ursenbacher S, Monney JC, Fumagalli L (2009) Limited genetic diversity and high differentiation among the remnant adder (Vipera berus) populations in the Swiss and French Jura Mountains. Conserv Genet 10:303–315. doi:10.1007/s10592-008-9580-7

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • van Wilgen BW, Biggs HC (2011) A critical assessment of adaptive ecosystem management in a large savanna protected area in South Africa. Biol Conserv 144:1179–1187. doi:10.1016/j.biocon.2010.05.006

    Article  Google Scholar 

  • Vazquez-Dominguez E, Suarez-Atilano M, Booth W, Gonzalez-Baca C, Cuaron AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions 14:2101–2116. doi:10.1007/s10530-012-0217-x

    Article  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153. doi:10.1017/s0016672307008798

    Article  CAS  PubMed  Google Scholar 

  • Werler J, Dixon J (2000) Texas snakes. University of Texas Press, Austin

    Google Scholar 

  • Winne CT, Willson JD, Todd BD, Andrews KM, Gibbons JW (2007) Enigmatic decline of a protected population of Eastern Kingsnakes, Lampropeltis getula, in South Carolina. Copeia 3:507–519

    Article  Google Scholar 

  • Zhan AB et al (2012) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Div Distribut 18:1042–1055. doi:10.1111/j.1472-4642.2012.00894.x

    Article  Google Scholar 

Download references

Acknowledgments

All snakes were collected by personnel working for the European Project LIFE10 NAT/ES/000565 LAMPROPELTIS under EU Commission approval (http://www.lifelampropeltis.es/). We thank José Miguel Sánchez, Alejandro Ramírez, Jorge Fernando Saavedra, Francisco Alarcón, Airam Eiroa, Juan Sánchez, Aitor Ojeda, Francisco Vera, Natanael Martín, Purificación Ventura, Antonio Alemán, Antonia Mª Lorenzo, José Luis Peña, Ivan Socorro, Ivan Sánchez, Anibal Peña, Alejandro Falcón y Yeray Bolaños, Rafael Riera, José Bergadá, Jim Pethe, Carlos Canella. We are grateful to Nieves González and Pablo Manent for laboratory facilities. We gratefully acknowledge the La Solana y San Roque (Telde-Valsequillo) habitants. LFLJ conceived and designed the study, and contributed laboratory facilities. Access to samples and project data, and funding were obtained by RG, MACP and MAP (European Project LIFE10NAT/ES/000565 Lampropeltis). CPM collected and processed the morphological and ecological data. CMA collected and analysed the genetic data, while FC designed, executed and interpreted the statistical analyses for the morphological, ecological and climate data, and both wrote the methods and results. PLML interpreted the results and wrote the paper, with contributions from all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. M. Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 564 kb)

Supplementary material 2 (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monzón-Argüello, C., Patiño-Martínez, C., Christiansen, F. et al. Snakes on an island: independent introductions have different potentials for invasion. Conserv Genet 16, 1225–1241 (2015). https://doi.org/10.1007/s10592-015-0734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0734-0

Keywords

Navigation