Skip to main content
Log in

A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose a parallel algorithm for computing exact solutions to the problem of minimizing the number of multileaf collimator apertures needed in step-and-shoot intensity modulated radiotherapy. These problems are very challenging particularly as the problem size increases. Here, we investigate how advanced parallel computing methods can be applied to these problems with a focus on the issues that are peculiar to parallel search algorithms and do not arise in their serial counterparts. A previous paper by the authors presented the MU–RD method for solving such problems using a serial constraint programming based search method. This method is being used as the starting point for a parallel implementation. The key challenges in creating a parallel implementation are ensuring that the CPUs are not starved of work and avoiding unnecessary computation due to the rearrangement of the search order in the parallel version. We show that efficient parallel optimisation is possible by dynamically changing the way work is split with potentially multiple tree search processes as well as parallel search of nodes. A weakly sorted queueing system is used to ensure appropriate prioritisation of tasks. Numerical results are presented to demonstrate the effectiveness of our algorithms in scaling from 8 to 64 CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahuja, R., Hamacher, H.: A network flow algorithm to minimize beam-on time for unconstrained multileaf collimator problems in cancer radiation therapy. Networks 45(1), 36–41 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Diaz, M., Dorta, I., Gabarro, J., Len, C., Luna, J., Moreno, L., Pablos, C., Petit, J., Rojas, A., Xhafa, F.: MALLBA: A library of skeletons for combinatorial optimisation. In: Monien, B., Feldmann, R. (eds.) Euro-Par 2002 Parallel Processing. Lecture Notes in Computer Science, vol. 2400, pp. 63–73. Springer, Berlin / Heidelberg (2002). doi:10.1007/3-540-45706-2-132

  3. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: CONCORDE TSP solver (2001)

  4. Baatar, D., Boland, N., Brand, S., Stuckey, P.: Minimum cardinality matrix decomposition into consecutive-ones matrices: CP and IP approaches. In: Van Hentenryck, P., Wolsey, L. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Lecture Notes in Computer Science, vol. 4510, pp. 1–15. Springer, Berlin / Heidelberg (2007). DOI:10.1007/978-3-540-72397-4-1

  5. Baatar, Davaatseren, Boland, Natashia, Johnston, Robert, Hamacher, Horst W.: A new sequential extraction heuristic for optimizing the delivery of cancer radiation treatment using multileaf collimators. INFORMS J. Comput. 21, 224–241 (2009)

    Article  MATH  Google Scholar 

  6. Baatar, Davaatseren, Hamacher, Horst W., Ehrgott, Matthias, Woeginger, Gerhard J.: Decomposition of integer matrices and multileaf collimator sequencing. Discret. Appl. Math. 152(1–3), 6–34 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bortfeld, T.: IMRT: a review and preview. Phys. Med. Biol. 51(13), R363 (2006)

    Article  Google Scholar 

  8. Cambazard, H., O’Mahony, E., O’Sullivan, B.: Hybrid methods for the multileaf collimator sequencing problem. In: Milano, M., Toth, P. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (Andrea Lodi. Lecture Notes in Computer Science, vol. 6140, pp. 56–70. Springer, Berlin / Heidelberg (2010). doi: 10.1007/978-3-642-13520-0-9

  9. Cambazard, H., OMahony, E., OSullivan, B.: A shortest path-based approach to the multileaf collimator sequencing problem. Discret. Appl. Math. 160(1–2), 81–99 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Campbell, J.F., Stiehr, G., Ernst, A.T., Krishnamoorthy, M.: Solving hub arc location problems on a cluster of workstations. Parallel Comput. 29(5), 555–574 (2003)

    Article  Google Scholar 

  11. Coin-OR, COmputational INfrastructure for Operations Research, http://www.coin-or.org/ (2012)

  12. Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel Branch-and-Bound Algorithms, pp. 1–28. Wiley, London (2006)

    Google Scholar 

  13. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. Comput. Sci. Eng. IEEE 5(1), 46–55 (1998)

    Article  Google Scholar 

  14. Djerrah, A., Le Cun, B., Cung, V.-D., Roucairol, C.: Bob++: Framework for solving optimization problems with branch-and-bound methods. In: 2006 15th IEEE International Symposium on High Performance Distributed Computing, pp. 369–370 (2006)

  15. Eager, D.L., Zahorjan, J., Lazowska, E.D.: Speedup versus efficiency in parallel systems. IEEE Trans. Comput. 38(3), 408–423 (1989)

    Article  Google Scholar 

  16. Eckstein, J., Phillips, C.A., Hart, W.E.: Pico: an object-oriented framework for parallel branch and bound. In: Dan Butnariu, Y.S., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, Studies in Computational Mathematics, vol. 8, pp. 219–265. Elsevier, Amsterdam (2001)

  17. Ehrgott, M., Holder, A.: Operations research methods for optimization in radiation oncology. Med. Phys. 25, 435–443. http://holderfamily.dot5hosting.com/aholder/research/papers/OROncology.pdf, (2009)

  18. Ehrgott, M., Guler, C., Hamacher, H., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. Ann. Oper. Res. 175, 309–365 (2010). doi:10.1007/s10479-009-0659-4

    Article  MATH  MathSciNet  Google Scholar 

  19. Ehrgott, M., Hamacher, H.W. Nußbaum, M.: Decomposition of matrices and static multileaf collimators: a survey. In: Alves, C.J.S., Pardalos, P.M., Vicente, L.N. (eds.) Optimization in Medicine, Springer Optimization and Its Applications, vol. 12, pp. 25–46.. Springer, New York (2008), doi:10.1007/978-0-387-73299-2-2

  20. Engel, Konrad: A new algorithm for optimal multileaf collimator field segmentation. Discret. Appl. Math. 152(1–3), 35–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ernst, A.T., Mak, V.H., Mason, L.R.: An exact method for the minimum cardinality problem in the treatment planning of intensity-modulated radiotherapy. INFORMS J. Comput. 21(4), 562–574 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Oper. Res. 62(1), 114–122 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fujimoto, N., Tsutsui, S.: A highly-parallel TSP solver for a GPU computing platform. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 6046, pp. 264–271. Springer, Berlin/Heidelberg (2011). doi: 10.1007/978-3-642-18466-6-31

  24. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms—survey and synthesis. Oper. Res. 42(6), 1042–1066 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Glankwamdee, W., Linderoth, J.: MW: a software framework for combinatorial optimization on computational grids. In: Talbi, E. (ed.) Parallel Combinatorial Optimization, pp. 239–261. Wiley, Berlin (2006)

    Chapter  Google Scholar 

  26. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, Cambridge (1994)

    Google Scholar 

  27. Holder, A., Salter, B.: A tutorial on radiation oncology and optimization. In: Ginsberg, H.J. (ed.) Tutorials on Emerging Methodologies and Applications in Operations Research, International Series in Operations Research & Management Science, vol. 76, pp. 4-1–4-45. Springer, New York (2005). doi:10.1007/0-387-22827-6-4

  28. Kalinowski, T.: Algorithmic complexity of the minimization of the number of segments in multileaf collimator field segmentation. Tech. report, Department of Mathematics, University of Rostock, Rostock (2004)

  29. Koch, T., Ralphs, T., Shinano, Y.: Could we use a million cores to solve an integer program? Math. Methods Oper. Res. 76(1), 67–93 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sandia National Labs., ACRO: A Common Repository for Optimizers (2012). https://software.sandia.gov/trac/acro

  31. Lai, T.-H.: Anomalies in parallel branch-and-bound algorithms. Commun. ACM 27, 594–602 (1984)

    Article  MATH  Google Scholar 

  32. Langer, H.M., Thai, V., Papiez, L.: Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimators. Med. Phys. 28(12), 1450–1458 (2001)

    Article  Google Scholar 

  33. Lenzen, F.: An integer programming approach to the multileaf collimator problem, Diploma thesis, University of Kaiserslautern, Dept. of Mathematics, June (2000)

  34. Mak, V.: Iterative variable aggregation and disaggregation in IP: an application. Oper. Res. Lett. 35(1), 36–44 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mason, L.R.: On the minimum cardinality problem in intensity modulated radiotherapy, Ph.D. thesis, Deakin University, School of Information Technology, May (2012). http://dro.deakin.edu.au/view/DU:30048940

  36. Mason, L.R., Mak-Hau, V.H., Ernst, A.T.: An exact method for minimizing the total treatment time in intensity-modulated radiotherapy. J. Oper. Res. Soc. 63(10), 1447–1456 (2012)

    Article  Google Scholar 

  37. Nußbaum, M.: Min cardinality c1-decomposition of integer matrices, Master’s thesis, Department of Mathematics, Technical University of Kaiserslautern, Kaiserslautern (2006)

  38. Ralphs, T.K., Güzelsoy, M., Mahajan, A.: SYMPHONY 5.4 user’s manual, Tech. report, COR@L Laboratory, Lehigh University, Lehigh (2011)

  39. Ridge, D., Becker, D., Merkey, P., Sterling, T.: Beowulf: harnessing the power of parallelism in a pile-of-PCs. In: IEEE Proceedings of Aerospace Conference, vol. 2, pp. 79–91. Feb (1997)

  40. Santoro, N.: Distributed Computing Environments, pp. 1–28. Wiley, New York (2006)

    Google Scholar 

  41. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of SCIP. In: Bischof, C., Hegering, H.-G., Nagel, M.E., Wittum, G. (eds.) Competence in High Performance Computing 2010, pp. 135–148. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  42. Taşkin, Z.C., Smith, J.C., Romeijn, H.E., Dempsey, J.F.: Optimal multileaf collimator leaf sequencing in IMRT treatment planning. Oper. Res. 58(3), 675–690 (2010)

    Google Scholar 

  43. VPAC, Victorian partnership for advanced computing (2013). http://www.vpac.org/

  44. Wake, G.M.G.H., Boland, N., Jennings, L.S.: Mixed integer programming approaches to exact minimization of total treatment time in cancer radiotherapy using multileaf collimators. Comput. Oper. Res. 36, 795–810 (2009)

    Article  MATH  Google Scholar 

  45. Xia, Ping, Verhey, Lynn J.: Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med. Phys. 25(8), 1424–1434 (1998)

    Article  Google Scholar 

  46. Xu, Y., Ralphs, T.K., Ladanyi, L., Saltzman, M.J.: ALPS: a framework for implementing parallel tree search algorithms. In: Golden, B., Raghavan, S., Wasil, E., Sharda, R., Vo, S. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies, Operations Research/Computer Science Interfaces Series, vol. 29, pp. 319–334. Springer, New York (2005). doi: 10.1007/0-387-23529-9-21

Download references

Acknowledgments

Luke Mason’s research is supported by Deakin University Postgraduate Research Scholarships. Vicky Mak’s research is supported by Deakin University’s CRGS Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky H. Mak-Hau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, L.R., Mak-Hau, V.H. & Ernst, A.T. A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning. Comput Optim Appl 60, 441–477 (2015). https://doi.org/10.1007/s10589-014-9670-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9670-z

Keywords

Navigation