Skip to main content
Log in

Photoinduced synthesis of gold nanoparticle–bacterial cellulose nanocomposite and its application for in-situ detection of trace concentration of dyes in textile and paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of bacterial cellulose (BC) and gold nanoparticles (AuNPs) were successfully fabricated using a facile one-step photoinduction method. Well-dispersed AuNPs were in-situ synthesized on the network of BC hydrogels in the presence of tetrachloroauric (III) acid solution under a xenon light source. BCs were treated with different concentrations of gold ions. The optical features and morphologies of the treated BCs were investigated by ultraviolet–visible absorption spectroscopy and scanning electron microscope. X-ray diffraction and X-ray photoelectron spectroscopy were also employed to characterize the AuNP–BC nanocomposites. The experimental results demonstrate that AuNPs are uniformly dispersed and well-bound to the BC matrix, and the three dimensional porous structure of BC is sustained. The acid condition facilitates the synthesis of AuNPs by using BC in aqueous solution. The AuNP–BC hydrogels were then dried into a transparent nanopaper and used as the surface enhanced Raman scattering (SERS) substrate. The lowest detectable concentration for Rhodamine 6G could be achieved at 0.1 nM. Furthermore, by stamping the nanopaper on a yarn or paper, we established an SERS platform for in-situ detection of trace concentration of dyes on the yarn or paper, enabling its application in forensic investigation and art conservation application areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC 51403162 and 51273153), the Educational Commission of Hubei Province of China (No. T201101). We would also like to acknowledge the research support from the MoE Innovation Team Project in Biological Fibers Advanced Textile Processing and Clean Production (No. IRT13086), Open Project of National Engineering Laboratory for Advanced Textile Processing and Clean Production (Wuhan Textile University) (GCSYS201702) and Open Project of Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education (Hubei University) (No. KLSAOFM1712).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Zhou or Bin Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhao, Z., He, Y. et al. Photoinduced synthesis of gold nanoparticle–bacterial cellulose nanocomposite and its application for in-situ detection of trace concentration of dyes in textile and paper. Cellulose 25, 3941–3953 (2018). https://doi.org/10.1007/s10570-018-1850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1850-z

Keywords

Navigation