Skip to main content
Log in

Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Composite films comprised of bacterial cellulose (BC) and collagen (COL) were developed using BC hydrogel membranes as the base material and COL as the reinforcing material. Glutaraldehyde (GT) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) were then used as cross-linking agents to prepare cross-linked BC/COL composite films by a wet chemical method. The effects of chemical cross-linking on the thermal and mechanical properties of composite films were investigated in detail. The COL molecules were adsorbed and deposited inside of 3D nanofiber networks of BC, coated on the surface of BC fibers. Chemical bonds formed between BC molecules, and between BC and COL molecules after cross-linking. Compared with BC, the obtained composite films showed 57.9 and 70.8% improvement in tensile strength after being cross-linked by GT and EDC·HCl, respectively. Cross-linking also enhanced the thermal stability of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL (2007) Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 13(7):1593–1605

    Article  CAS  Google Scholar 

  • Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8(3):301–306

    Article  CAS  Google Scholar 

  • Cai ZJ, Hou C (2012a) Preparation and characterization of bacterial cellulose/gelatin composite porous scaffold. Polym Mater Sci Eng 28(8):140–143

    Google Scholar 

  • Cai ZJ, Hou C (2012b) Preparation and characterization of bacterial cellulose/chitosan composite porous scaffold. Polym Mater Sci Eng 28(6):121–124

    CAS  Google Scholar 

  • Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120(5):2938–2944

    Article  CAS  Google Scholar 

  • Chen YX, Zhou XD, Lin QF, Jiang DF (2014) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21(4):2679–2693

    Article  CAS  Google Scholar 

  • Czaja WK, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial celluloses-the natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8(1):1–12

    Article  CAS  Google Scholar 

  • Fontana JD, Franco VC, de Souza SJ, Lyra IN, de Souza AM (1991) Nature of plant stimulators in the production of Acetobacter xylinum (“tea fungus”) biofilm used in skin therapy. Appl Biochem Biotechnol 28–29:341–351

    Article  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):1–19

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  • Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733

    Article  CAS  Google Scholar 

  • Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Aramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138(3):311–315

    Article  CAS  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    Article  CAS  Google Scholar 

  • Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC (2016) Production of bacterial cellulose with various additives in PCS rotating disk bioreactor and its material properties analysis. Cellulose 23(1):367–377

    Article  CAS  Google Scholar 

  • Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2–3):193–196

    Article  CAS  Google Scholar 

  • Ma H, Shen J, Yang Q, Zhou J, Xia S, Cao J (2015) Effect of the introduction of fish collagen on the thermal and mechanical properties of poly(lactic acid). Ind Eng Chem Res 54(43):10945–10951

    Article  CAS  Google Scholar 

  • Mariotti F, Tomé D, Mirand PP (2008) Converting nitrogen into protein-beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48(2):177–184

    Article  CAS  Google Scholar 

  • Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17(2):349–363

    Article  CAS  Google Scholar 

  • Olyveira GM, Valido DP, Costa LMM, Gois PBP, Filho LX, Basmaji P (2011) First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. J Biomater Nanobiotechnol 2(3):239–243

    Article  Google Scholar 

  • Pradhan SM, Katti KS, Katti DR (2012) Structural hierarchy controls deformation behavior of collagen. Biomacromol 13(8):2562–2569

    Article  CAS  Google Scholar 

  • Saska S, Teixeira LN, Oliveira PTD, Gaspar AMM, Ribeiro SJL, Messaddeq Y, Marchetto R (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22(41):22102–22112

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8

    Article  CAS  Google Scholar 

  • Wen X, Zheng Y, Wu J, Wang LN, Yuan Z, Peng J, Meng H (2015) Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int J Nanomedicine 10:4623–4637

    CAS  Google Scholar 

  • Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13(6):689–696

    Article  CAS  Google Scholar 

  • Wu CN, Cheng KC (2017) Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24(1):269–283

    Article  CAS  Google Scholar 

  • Yang Q, Hirata M, Lu DN, Nakajima H, Kimura Y (2011) Highly efficient reinforcement of poly-L-lactide materials by polymer blending of a thermotropic liquid crystalline polymer. Biomacromol 12(2):354–358

    Article  Google Scholar 

  • Yang L, Zhang HY, Yang Q, Lu DN (2012) Bacterial cellulose-poly(vinyl alcohol) (BC/PVA) nanocomposite hydrogels prepared by chemical cross-linking. J Appl Polym Sci 126(S1):244–250

    Article  Google Scholar 

  • Yang L, Yang Q, Lu DN (2013) Effect of chemical crosslinking degree on mechanical properties of bacterial cellulose/poly (vinyl alcohol) (BC/PVA) composite membranes. Monatsh Chem 145(1):91–95

    Article  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 1(2):153–155

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Jiaxing Innovation Team of Biomedical Materials (MTC2015-006) and Jiaxing Innovation Team of Cleaner Production of Leather and Textile Dyeing & Finishing (JXLD2016-06). The financial support from National Natural Science Foundation of China (51303065), Jiaxing Project of Science and Technology (2015C13005), and Scientific Research Project of Entry Exit Inspection and Quarantine Bureau (2015K151) are also acknowledged. And Q. Yang is very grateful for the China Scholarship Council for the scholarship supporting her research in Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ma, H., Dai, Z. et al. Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen. Cellulose 24, 3777–3787 (2017). https://doi.org/10.1007/s10570-017-1366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1366-y

Keywords

Navigation