Skip to main content
Log in

Structure–property relationships of elementary bamboo fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Natural fibers are promising alternatives to synthetic fibers because of their sustainability, low environmental footprint and specific properties desirable for a wide range of technical engineering applications. The industrial implementation of fine grade natural bamboo fibers, including technical (100–200 microns) and elementary fibers (<30 microns) has been of increasing interest in recent times because these fibers offer a unique set of properties including high tensile strength, antibacterial and UV absorption. However to date, very little scientific effort has been devoted to fully understand the inter-correlation between their mechanical, physico-chemical, microstructural and morphological properties. In this paper, we report for the first time the structure–property relationship of elementary bamboo fibers. The impact of the inner microstructural organization of fibers (including the micro-fibrils angle) and physico-chemical factors such as the cellulose content and crystallinity index, on the tensile performance of these fibers is discussed in detail. This work also provides an insight into the application of bamboo fibers as natural and low-cost sorbent material for the removal of Cu2+ metal ions from model industrial wastewater. The metal ion adsorption properties of the fibers are correlated to surface energy analysis obtained from inverse gas chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afrin T, Tsuzuki T, Kanwar RK, Wang X (2011a) The origin of the antibacterial property of bamboo. J Text Inst 103:844–849. doi:10.1080/00405000.2011.614742

    Article  Google Scholar 

  • Afrin T, Tsuzuki T, Wang X (2011b) UV absorption property of bamboo. J Text Inst 103:394–399. doi:10.1080/00405000.2011.580543

    Article  Google Scholar 

  • Akin DE (2010a) Chemistry of plant fibres. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Renewable resources. Wiley, New York, pp 13–22

    Google Scholar 

  • Akin DE (2010b) Flax—structure, chemistry, retting and processing. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Wiley, New York, pp 89–108

    Google Scholar 

  • Alves Fidelis ME, Pereira TVC, Gomes OFM, de Silva Andrade F, Toledo Filho RD (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2:149–157. doi:10.1016/j.jmrt.2013.02.003

    Article  Google Scholar 

  • Anandjiwala RD, John M (2010) Sisal–cultivation, processing and products. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Wiley, New York, pp 182–195

    Google Scholar 

  • Andersons J, Spārniņš E, Joffe R, Wallström L (2005) Strength distribution of elementary flax fibres. Compos Sci Technol 65:693–702. doi:10.1016/j.compscitech.2004.10.001

    Article  CAS  Google Scholar 

  • Astley OM, Donald AM (2001) A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules 2:672–680. doi:10.1021/bm005643l

    Article  CAS  Google Scholar 

  • Belford DS, Myers A, Preston RD (1958) Electron diffraction study of adsorbed metal ions on the surface of cellulose microfibrils. Nature 181:1516–1518

    Article  CAS  Google Scholar 

  • Bismarck A et al (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23:872–894. doi:10.1002/pc.10485

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. doi:10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  • Brandt AM (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9. doi:10.1016/j.compstruct.2008.03.006

    Article  Google Scholar 

  • Burgert I, Keckes J, Frühmann K, Fratzl P, Tschegg SE (2002) A comparison of two techniques for wood fibre isolation-evaluation by tensile tests on single fibres with different microfibril angle. Plant Biol 4:9–12. doi:10.1055/s-2002-20430

    Article  CAS  Google Scholar 

  • Butterfield BG, Meylan BA (1980) Three-dimensional structure of wood. Springer, New York

    Book  Google Scholar 

  • Calkin J (1951) The system cellulose-sodium hydroxide-water: determination of the ionization constant of cellulose. Tappi 34:108A–112A

    Google Scholar 

  • CELC (2012) Other technical application of Flax and Hemp. In: Reux F, Verpoest I (eds) Flax and Hemp fibres: a natural solution for the composite industry. JEC Composite, Paris, pp 201-210

    Google Scholar 

  • Ciesielski W, Tomasik P (2004) Complexes of amylose and amylopectins with multivalent metal salts. J Inorg Biochem 98:2039–2051. doi:10.1016/j.jinorgbio.2004.09.010

    Article  CAS  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117. doi:10.1016/j.carbpol.2010.11.008

    Article  CAS  Google Scholar 

  • Corrêa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • Coupas AC, Gauthier H, Gauthier R (1998) Inverse gas chromatography as a tool to characterize ligno-cellulosic fibers modified for composite applications. Polym Compos 19:280–286. doi:10.1002/pc.10101

    Article  CAS  Google Scholar 

  • Crow E, Murphy RJ (2000) Microfibril orientation in differentiating and maturing fibre and parenchyma cell walls in culms of bamboo (Phyllostachys viridi-glaucescens (Carr.) Riv. & Riv.). Bot J Linn Soc 134:339–359. doi:10.1111/j.1095-8339.2000.tb02357.x

    Google Scholar 

  • Das SC, Zhou Q, Morton DA, Larson I, Stewart PJ (2011) Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. Eur J Pharm Sci 43:325–333

    Article  CAS  Google Scholar 

  • Dávila-Jiménez MM, Elizalde-González MP, Geyer W, Mattusch J, Wennrich R (2003) Adsorption of metal cations from aqueous solution onto a natural and a model biocomposite. Colloids Surf A Physicochem Eng Asp 219:243–252. doi:10.1016/S0927-7757(03)00052-9

    Article  Google Scholar 

  • Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161. doi:10.1016/j.indcrop.2005.05.004

    Article  CAS  Google Scholar 

  • Deshpande AP, Bhaskar Rao M, Lakshmana Rao C (2000) Extraction of bamboo fibers and their use as reinforcement in polymeric composites. J Appl Polym Sci 76:83–92. doi:10.1002/(SICI)1097-4628(20000404)76:1<83:AID-APP11>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289. doi:10.1016/j.compositesa.2013.10.014

    Article  CAS  Google Scholar 

  • Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43:1419–1429. doi:10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  • Dumée L et al (2013) Characterization of carbon nanotube webs and yarns with small angle X-ray scattering: revealing the yarn twist and inter-nanotube interactions and alignment. Carbon 63:562–566

    Article  Google Scholar 

  • Eder M, Burgert I (2010) Natural fibres–function in nature. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Wiley, New York, pp 23–39

    Google Scholar 

  • Erdumlu N, Ozipek B (2008) Investigation of regenerated bamboo fibre and yarn characteristics. Fibres Text East Eur 16:69

    Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203. doi:10.1073/pnas.1108942108

    Article  Google Scholar 

  • Fidelisa MEA, Pereiraa TVC, Gomesb OFM, Silvaa FA, Filhoa RDT (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol. doi:10.1016/j.jmrt.2013.02.003

    Google Scholar 

  • Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575. doi:10.1002/macp.200500008

    Article  CAS  Google Scholar 

  • Göltenboth F, Mühlbauer W (2010) Abaca–cultivation, extraction and processing. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Wiley, New York, pp 163–179

    Chapter  Google Scholar 

  • Gutmann V (1967) Coordination chemistry of certain transition-metal ions. The role of the solvent. Coord Chem Rev 2:239–256. doi:10.1016/S0010-8545(00)80206-4

    Article  CAS  Google Scholar 

  • He J, Tang Y, Wang S-Y (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran Polym J 16:807

    CAS  Google Scholar 

  • Hearle JWS, Sparrow JT (1979) Mechanics of the extension of cotton fibers. II. Theoretical modeling. J Appl Polym Sci 24:1857–1874. doi:10.1002/app.1979.070240807

    Article  CAS  Google Scholar 

  • Hodzic A, Shanks R (2014) Natural fibre composites: materials, processes and properties. Woodhead Publishing, Sawston

    Google Scholar 

  • Jain S, Kumar R, Jindal UC (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604. doi:10.1007/BF01165993

    Article  CAS  Google Scholar 

  • Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J Struct Biol 113:13–22. doi:10.1006/jsbi.1994.1028

    Article  Google Scholar 

  • Jones MD, Young P, Traini D (2012) The use of inverse gas chromatography for the study of lactose and pharmaceutical materials used in dry powder inhalers. Adv Drug Deliv Rev 64:285–293. doi:10.1016/j.addr.2011.12.015

    Article  CAS  Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376. doi:10.1016/j.compositesa.2003.09.016

    Article  Google Scholar 

  • Khalil HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. doi:10.1016/j.matdes.2012.06.015

    Article  Google Scholar 

  • Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater 50:359–376. doi:10.1007/s11029-014-9422-2

    Article  CAS  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44:120–127. doi:10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42:856–873. doi:10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  • Lee B-G, Rowell RM (2004) Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J Nat Fibers 1:97–108

    Article  CAS  Google Scholar 

  • Liese W (1987) Research on bamboo. Wood Sci Technol 21:189–209. doi:10.1007/BF00351391

    Article  Google Scholar 

  • Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl Instrum Methods Phys Res Sect B 268:334–340. doi:10.1016/j.nimb.2009.09.053

    Article  CAS  Google Scholar 

  • Mills RH, Gardner DJ, Wimmer R (2008) Inverse gas chromatography for determining the dispersive surface free energy and acid–base interactions of sheet molding compound—part II 14 Ligno-cellulosic fiber types for possible composite reinforcement. J Appl Polym Sci 110:3880–3888. doi:10.1002/app.28956

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. doi:10.1023/A:1021013921916

    Article  CAS  Google Scholar 

  • Munder F, Fürll C, Hempel H (2005) Processing of bast fiber plants for industrial application. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press Taylor & Francis Group, Boca Raton, pp 109–140

    Google Scholar 

  • Mussig J, Fisher H, Graupner N, Drieling A (2010) Testing method for measuring physical and mechanical fibre properties. In: Mussig J (ed) Industrial application of natural fibres: structure, properties and technical applications. Renewable resources. Wiley, New York, pp 269–310

    Chapter  Google Scholar 

  • Mwaikambo L (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7:121

    Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. doi:10.1016/j.carbpol.2015.08.035

    Article  CAS  Google Scholar 

  • Namkhang P, Kongkachuichay P (2015) Synthesis of copper-based nanostructured catalysts on SiO2–Al2O3, SiO2–TiO2, and SiO2–ZrO2 supports for NO reduction. J Nanosci Nanotechnol 15:5410–5417

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29. doi:10.1016/S0926-2040(99)00043-0

    Article  CAS  Google Scholar 

  • Nishina A, Hasegawa K, Uchibori T, Seino H, Osawa T (1991) 2,6-Dimethoxy-p-benzoquinone as an antibacterial substance in the bark of Phyllostachys heterocycla var. pubescens, a species of thick-stemmed bamboo. J Agric Food Chem 39:266–269. doi:10.1021/jf00002a009

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249. doi:10.1007/s10086-009-1029-1

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Ogawa K, Hirogaki T, Aoyama E, Imamura H (2008) Bamboo fiber extraction method using a machining center. J Adv Mech Des Syst Manuf 2:550–559. doi:10.1299/jamdsm.2.550

    Google Scholar 

  • Oksman K, Mathew AP, Långström R, Nyström B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853. doi:10.1016/j.compscitech.2009.03.020

    Article  CAS  Google Scholar 

  • Okubo K, Fuji T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos A Appl Sci Manuf 35:377–383

    Article  Google Scholar 

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246. doi:10.1007/BF00350830

    CAS  Google Scholar 

  • Parliament E (2005) Directive 2005/64/EC of the European parliament and of the council of 26 October 2005 Official Journal of the European Communities L 310/10, Strasbourg, France

  • Poletto M, Ornaghi HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Quitain AT, Katoh S, Moriyoshi T (2004) Isolation of antimicrobials and antioxidants from moso-bamboo (Phyllostachys Heterocycla) by supercritical CO2 extraction and subsequent hydrothermal treatment of the residues. Ind Eng Chem Res 43:1056–1060. doi:10.1021/ie0303552

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46:5494–5500. doi:10.1016/j.polymer.2005.04.073

    Article  CAS  Google Scholar 

  • Rendleman JA (1978) Metal-polysaccharide complexes—part II. Food Chem 3:127–162. doi:10.1016/0308-8146(78)90031-6

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi:10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  • Sears K, Dumée LF, Finn N, Humphries W (2013) Focused ion beam milling of carbon nanotube Yarns and Bucky-papers: correlating their internal structure with their macro-properties. In: Wang ZM (ed) Fib nanostructures. Springer, New York

    Google Scholar 

  • Shenboo (2014) New green natural and eco-friendly product—natural original bamboo fiber. http://www.kongfi.com/new.htm. Accessed 25 Nov 2014

  • Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresour Technol 96:1430–1438. doi:10.1016/j.biortech.2004.12.010

    Article  CAS  Google Scholar 

  • Taj S, Munawar MA, Khan S (2007) Natural fiber-reinforced polymer composites. Proc Pak Acad Sci 44:129

    CAS  Google Scholar 

  • Thielmann F (2004) Introduction into the characterisation of porous materials by inverse gas chromatography. J Chromatogr A 1037:115–123. doi:10.1016/j.chroma.2004.03.060

    Article  CAS  Google Scholar 

  • Thielmann F, Burnett DJ, Heng JY (2007) Determination of the surface energy distributions of different processed lactose. Drug Dev Ind Pharm 33:1240–1253

    Article  CAS  Google Scholar 

  • Togkalidou T, Fujiwara M, Patel S, Braatz RD (2001) Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. J Cryst Growth 231:534–543. doi:10.1016/S0022-0248(01)01518-4

    Article  CAS  Google Scholar 

  • Tran LQN, Fuentes CA, Dupont-Gillain C, Van Vuure AW, Verpoest I (2011) Wetting analysis and surface characterisation of coir fibres used as reinforcement for composites. Colloids Surf A 377:251–260. doi:10.1016/j.colsurfa.2011.01.023

    Article  CAS  Google Scholar 

  • Ursescu M, Malutan T, Ciovica S (2009) Iron gall inks influence on papers’ thermal degradation. FTIR spectroscopy applications. Eur J Sci Theol 5:71–84

    Google Scholar 

  • Vuure AW, Osorio L, Trujillo E, Fuentes C, Verpoest I (2011) Long bamboo fibre composite. Paper presented at the 18th international conference on composite materials, South Korea

  • Walton KS, Snurr RQ (2007) Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc 129:8552–8556. doi:10.1021/ja071174k

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. doi:10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  • Xia Z, Yu J, Cheng L, Liu L, Wang W (2009) Study on the breaking strength of jute fibres using modified Weibull distribution. Compos A Appl Sci Manuf 40:54–59

    Article  Google Scholar 

  • Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fibre. In: 2011 International conference on intelligent computation technology and automation (ICICTA), 2011. IEEE, pp 143–148

  • Yueping W et al (2009) Structures of natural bamboo fiber for textiles. Text Res J. doi:10.1177/0040517509337633

    Google Scholar 

  • Zafeiropoulos NE, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: part II. Application of Weibull statistics. Compos A Appl Sci Manuf 38:629–638. doi:10.1016/j.compositesa.2006.02.005

    Article  Google Scholar 

  • Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8:1359–1369

    CAS  Google Scholar 

  • Zakikhani P, Zahari R, Sultan M, Majid D (2014) Bamboo fibre extraction and its reinforced polymer composite material. Int J Chem Mater Sci Eng 8:322–324

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Dr. Andreea Voda and Dr. Thomas Chaffraix for their help with the FTIR analysis, Dr Tara Afrin for her help with the chemical digestion analysis, Dr. Mark Nave for his time and training on the FIB, Peter Lynch and Mr. Nicolas Goujon for fruitful discussions of the SAXS data. The Australian Synchrotron is acknowledged for its financial support (Grant M7937) as well as the beamline scientists Dr. Stephen Mudie and Dr. Adrian Hawley for their help. The AutoCRC is acknowledged for financial support of this project. We would like to thank Dr Adam Taylor for his help on improving the clarity of this manuscript. The authors would like to specially acknowledge Dr. Alfred D. French for his constructive remarks and discussions over the XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Magniez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castanet, E., Li, Q., Dumée, L.F. et al. Structure–property relationships of elementary bamboo fibers. Cellulose 23, 3521–3534 (2016). https://doi.org/10.1007/s10570-016-1078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1078-8

Keywords

Navigation