Skip to main content
Log in

Effect of Water on Low-Temperature CO Oxidation Over a Au/Al2O3 Model Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic oxidation of CO at 300 K over a Au/Al2O3/NiAl(110) surface was studied. No CO2 formed in the absence of water in the CO/O2 reaction gas mixture, whereas CO was oxidized when water was present; the CO oxidation rate increased with increasing water partial pressure \((P_{{{\text{H}}_{2} {\text{O}}}} )\) and with decreasing particle size of Au. The water was shown to promote CO oxidation over the Au/Al2O3/NiAl(110) surface, as has been previously observed for a Au/TiO2(110) surface. We demonstrated that the active sites for and role of water in CO oxidation over Au/Al2O3/NiAl(110) were identical to those over Au/TiO2(110). However, more water was required to increase the CO oxidation rate over Au/Al2O3/NiAl(110), compared to that required over Au/TiO2(110). On the basis of temperature-programmed desorption measurements of adsorbed water on the support surfaces, we concluded that the difference in the dependence of CO oxidation on \(P_{{{\text{H}}_{2} {\text{O}}}}\) between Au/Al2O3/NiAl(110) and Au/TiO2(110) could be attributed to the difference in the affinity for water between the Al2O3/NiAl(110) and TiO2(110) supports.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  2. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  3. Haruta M, Takase T, Kobayashi T, Tsubota S (1991) In: Yoshida S, Takezawa N, Ono T (eds) Catalytic science and technology, vol 1. Kodansha, Tokyo, p 331

    Google Scholar 

  4. Park ED, Lee JS (1999) J Catal 186:1

    Article  CAS  Google Scholar 

  5. Bond GC, Thompson DT (2000) Gold Bull 33:41

    Article  CAS  Google Scholar 

  6. Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256

    Article  CAS  Google Scholar 

  7. Daté M, Haruta M (2001) J Catal 201:221

    Article  Google Scholar 

  8. Daniells ST, Overweg AR, Makkee M, Moulijn JA (2005) J Catal 230:52

    Article  CAS  Google Scholar 

  9. Kim TS, Gong J, Ojifinni RA, White JM, Mullins CB (2006) J Am Chem Soc 128:6282

    Article  CAS  Google Scholar 

  10. Calla JT, Davis RJ (2006) J Catal 241:407

    Article  CAS  Google Scholar 

  11. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767

    Article  CAS  Google Scholar 

  12. Diemant T, Bansmann J, Behm RJ (2010) Vacuum 84:193

    Article  Google Scholar 

  13. Lian H, Jia M, Pan W, Li Y, Zhang W, Jiang D (2005) Catal Commun 6:47

    Article  CAS  Google Scholar 

  14. Ojeda M, Zhan BZ, Iglesia E (2012) J Catal 285:92

    Article  CAS  Google Scholar 

  15. Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129

    Article  Google Scholar 

  16. Dobrosz-Gómez I, Kocemba I, Rynkowski JM (2009) Catal Lett 128:297

    Article  Google Scholar 

  17. Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144

    Article  CAS  Google Scholar 

  18. Jaeger RM, Kuhlenbeck H, Freund HJ, Wuttig M, Hoffmann W, Franchy R, Ibach H (1991) Surf Sci 259:235

    Article  CAS  Google Scholar 

  19. Libuda J, Winkelmann F, Bäumer M, Freund HJ, Bertrams T, Neddermeyer H, Müller K (1994) Surf Sci 318:61

    Article  CAS  Google Scholar 

  20. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Angew Chem Int Ed 48:9515

    Article  CAS  Google Scholar 

  21. Gao F, Wood TE, Goodman DW (2010) Catal Lett 134:9

    Article  CAS  Google Scholar 

  22. Bongiorno A, Landman U (2005) Phys Rev Lett 95:106102

    Article  Google Scholar 

  23. Hugenschmidt MB, Gamble L, Campbell CT (1994) Surf Sci 302:329

    Article  CAS  Google Scholar 

  24. Wu T, Kaden WE, Anderson SL (2008) J Phys Chem C 112:9006

    Article  CAS  Google Scholar 

  25. Tzvetkov G, Zubavichus Y, Koller G, Schmidt Th, Heske C, Umbach E, Grunze M, Ramsey MG, Netzer FP (2003) Surf Sci 543:131

    Article  CAS  Google Scholar 

  26. Yi CW, Szanyi J (2007) J Phys Chem C 111:17597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fujitani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, I., Fujitani, T. Effect of Water on Low-Temperature CO Oxidation Over a Au/Al2O3 Model Catalyst. Catal Lett 144, 1113–1117 (2014). https://doi.org/10.1007/s10562-014-1261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1261-1

Keywords

Navigation