Skip to main content
Log in

CO Oxidation on the Ag-Doped Au Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The CO oxidation reactivity of negatively and positively charged isolated cuboctahedron (c-Oh) Au13 and Au12Ag nanoparticles is investigated using density functional theory calculations. Charging the nanoparticles modifies the structural stability of the Au13 and Au12Ag nanoparticles as well as the electron distribution in the core and shell atoms. An Ag-doping in gold (Au) clusters improves CO or O2 adsorption on Au12Ag cluster. For Au13 cluster, CO preadsorption increases the capacity of CO and O2 coadsorption, but the result is opposite for Au12Ag cluster. The neutral Au13 and Au12Ag clusters exhibit relatively poor reactivity for CO oxidation, while the reactivity is enhanced significantly by excess electrons. In comparisons of the results of CO oxidation on Ag- and un-doped Au nanoparticles, we discover Ag-doping in Au cluster surely decreases first energy barrier (Ea), and increases slightly second energy barrier (Eb). This work provides a fundamental insight into how the excess charges affect the adsorption activity and how the Ag-doping in Au clusters adjusts the catalytic activity for Ag- or un-doped c-Oh Au clusters.

Graphical Abstract

Reaction pathways for CO + O2 → CO2 + O associated with Au13 and Au12Ag clusters. Here, * denotes the adsorbed species on an Au13 or Au12Ag cluster. The reactivity of CO oxidation on Au nanoparticles is enhanced significantly by excess electrons. An Ag-doping in Au cluster improves CO or O2 adsorption on Au12Ag cluster. Ag-doping in Au clusters decreases first energy barrier (Ea), and increases slightly second energy barrier (Eb). Ag-doping in Au nanoparticles weakens C–Au bond at CO + O2 coadsorption state, and strengths CO–O bonds at transition states and intermediate state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) J Am Chem Soc 127:6819–6829

    Article  CAS  Google Scholar 

  2. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Chem Phys C 113:10548–10553

    Article  CAS  Google Scholar 

  3. Janssens TVW, Carlsson A, Puig-Molina A, Clausen BSJ (2006) J Catal 240:108–113

    Article  CAS  Google Scholar 

  4. Wang Y, Gong XG (2006) J Chem Phys 125:124703

    Article  Google Scholar 

  5. Gao Y, Shao N, Bulusu S, Zeng XC (2008) J Phys Chem C 112:8234–8238

    Article  CAS  Google Scholar 

  6. Gao Y, Shao N, Pei Y, Chen ZF, Zeng XC (2011) ACS Nano 5:7818–7829

    Article  CAS  Google Scholar 

  7. Yoon B, Koskinen P, Huber B, Kostko O, von Issendorff B, Häkkinen H, Moseler M, Landman U (2007) ChemPhysChem 8:157

    Article  CAS  Google Scholar 

  8. Yoon B, Häkkinen H, Landman U (2003) J Phys Chem A 107:4066

    Article  CAS  Google Scholar 

  9. Wu X, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) J Chem Phys 117:4010

    Article  CAS  Google Scholar 

  10. Xie YP, Gong XG (2010) J Chem Phys 132:244302

    Article  Google Scholar 

  11. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) J Am Chem Soc 125:10437–10445

    Article  CAS  Google Scholar 

  12. Yuan DW, Zeng Z (2004) J Chem Phys 120:6574

    Article  CAS  Google Scholar 

  13. Johnson GE, Reilly NM, Tyo EC, Castleman AW (2008) J Phys Chem C 112:9730

    Article  CAS  Google Scholar 

  14. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J, Abbet S, Judai K, Heiz U (2005) Science 307:403

    Article  CAS  Google Scholar 

  15. Hagen J, Socaciu LD, Elijazyfer M, Heiz U, Bernhardt TM, Woste L (2002) Phys Chem Chem Phys 4:1707

    Article  CAS  Google Scholar 

  16. Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499

    Article  CAS  Google Scholar 

  17. Tang DY, Hu CW (2011) J Phys Chem Lett 2:2972–2977

    Article  CAS  Google Scholar 

  18. Molayem M, Grigoryan VG, Springborg M (2011) J Phys Chem C 115:22148–22162

    Article  CAS  Google Scholar 

  19. Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) J Am Chem Soc 133:19432–19441

    Article  Google Scholar 

  20. Molina LM, Hammer B (2005) J Catal 233:399

    Article  CAS  Google Scholar 

  21. Price SWT, Speed JD, Kannan P, Russell AE (2011) J Am Chem Soc 133:19448–19458

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  23. Delley B (2002) Phys Rev B 66:155125

    Article  Google Scholar 

  24. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  25. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  26. Henkelman G, Uberuaga BP, Jonsson HA (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  27. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  28. Chen FY, Johnston RL (2008) Acta Mater 56:2374

    Article  CAS  Google Scholar 

  29. Santos E, Schmickler W (2006) ChemPhysChem 7:2282–2285

    Article  CAS  Google Scholar 

  30. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  31. Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401

    Article  Google Scholar 

  32. Fielicke A, Gruene P, Meijer G, Rayner DM (2009) Surf Sci 603:1427–1433

    Article  CAS  Google Scholar 

  33. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    Article  CAS  Google Scholar 

  34. Kim DH, Shin K, Lee HM (2011) J Phys Chem C 115:24771–24777

    Article  CAS  Google Scholar 

  35. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov J (2008) Angew Chem Int Ed 47:4835–4839

    Article  CAS  Google Scholar 

  36. Wang CM, Fan KN, Liu ZP (2007) J Am Chem Soc 129:2642

    Article  CAS  Google Scholar 

  37. Molina LM, Hammer B (2003) Phys Rev Lett 90:206102

    Article  CAS  Google Scholar 

  38. Molina LM, Rasmussen MD, Hammer BJ (2004) Chem Phys 120:7673

    CAS  Google Scholar 

  39. An W, Pei Y, Zeng XC (2008) Nano Lett 8:195–202

    Article  CAS  Google Scholar 

  40. Gao Y, Shao N, Pei Y, Zeng XC (2010) Nano Lett 10:1055–1062

    Article  CAS  Google Scholar 

  41. Zhang C, Michaelides A, King DA, Jenkins SJ (2008) J Chem Phys 129:197408

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of this research by the National Natural Science Foundation of People’s Republic of China (No. 50971100/E010503 and No. 51271148) and the Natural Science Foundation of Shaanxi Province in People’s Republic of China (No. 2010JK917 and No. 2012SXTS05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Chen, F. CO Oxidation on the Ag-Doped Au Nanoparticles. Catal Lett 143, 84–92 (2013). https://doi.org/10.1007/s10562-012-0922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0922-1

Keywords

Navigation