Skip to main content
Log in

An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We analyze the influence of atmospheric boundary-layer development on new particle formation (NPF) during the morning transition. Continuous in-situ measurements of vertical profiles of temperature, humidity and aerosol number concentrations were quasi-continously measured near Melpitz, Germany, by unmanned aerial systems to investigate the potential connection between NPF and boundary-layer dynamics in the context of turbulence, temperature and humidity fluctuations. On 3 April 2014 high number concentrations of nucleation mode particles up to \(6.0 \times 10^4~\text {cm}^{-3}\) were observed in an inversion layer located about 450 m above ground level. The inversion layer exhibited a spatial temperature structure parameter \(C_T^2\) 15 times higher and a spatial humidity structure parameter \(C_q^2\) 5 times higher than in the remaining part of the vertical profile. The study provides hints that the inversion layer is responsible for creating favorable thermodynamic conditions for a NPF event. In addition, this layer showed a strong anti-correlation of humidity and temperature fluctuations. Using estimates of the turbulent mixing and dissipation rates, it is concluded that the downward transport of particles by convective mixing was also the reason of the sudden increase of nucleation mode particles measured on ground. This work supports the hypothesis that many of the NPF events that are frequently observed near the ground may, in fact, originate at elevated altitude, with newly formed particles subsequently being mixed down to the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Altstädter B, Platis A,Wehner B, Scholtz A,Wildmann N, Hermann M, Käthner R, Baars H, Bange J, Lampert A (2015)ALADINA: an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmos Meas Tech 8(4):1627–1639. doi:10.5194/amt-8-1627-2015

  • Bange J, Spieß T, van den Kroonenberg AC (2007) Characteristics of the early-morning shallow convective boundary layer from helipod flights during STINHO-2. Theor Appl Climatol 90:113–126

    Article  Google Scholar 

  • Barbaro E, Arellano JVG, Ouwersloot HG, Schröter JS, Donovan DP, Krol MC (2014) Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system. J Geophys Res Atmos 119(10):5845–5863

    Article  Google Scholar 

  • Berkowicz R, Prahm LP (1979) Generalization of K theory for turbulent diffusion. part I: Spectral turbulent diffusivity conceptpectral turbulent diffusivity concept. J Appl Meteorol 18(3):266–272

    Article  Google Scholar 

  • Bigg E (1997) A mechanism for the formation of new particles in the atmosphere. Atmos Res 43(2):129–137

    Article  Google Scholar 

  • Birmili W, Wiedensohler A (2000) New particle formation in the continental boundary layer: meteorological and gas phase parameter influence. Geophys Res Lett 27(20):3325–3328

    Article  Google Scholar 

  • Birmili W, Tomsche L, Sonntag A, Opelt C, Weinhold K, Nordmann S, Schmidt W (2013) Variability of aerosol particles in the urban atmosphere of Dresden (Germany): efects of spatial scale and particle size. Meteorol Z 22(2):195–211

    Article  Google Scholar 

  • Boy M, Hellmuth O, Korhonen H, Nilsson E, ReVelle D, Turnipseed A, Arnold F, Kulmala M (2006) MALTE-model to predict new aerosol formation in the lower troposphere. Atmos Chem Phys 6(12):4499–4517

    Article  Google Scholar 

  • Caughey S, Palmer S (1979) Some aspects of turbulence structure through the depth of the convective boundary layer. Q J R Meteorol Soc 105(446):811–827

    Article  Google Scholar 

  • Crumeyrolle S, Manninen H, Sellegri K, Roberts G, Gomes L, Kulmala M, Weigel R, Laj P, Schwarzenboeck A (2010) New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmos Chem Phys 10(14):6721–6735

    Article  Google Scholar 

  • Davidson PA (2004) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford 235 pp

    Google Scholar 

  • Draxler R, Rolph G (2003) HYSPLIT (hybrid single-particle lagrangian integrated trajectory). NOAA Air Resources Laboratory, Silver Spring

    Google Scholar 

  • Easter RC, Peters LK (1994) Binary homogeneous nucleation: temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J Appl Meteorol 33(7):775–784

    Article  Google Scholar 

  • Größ J, Birmili W, Hamed A, Sonntag A, Wiedensohler A, Spindler G, Maninnen HE, Nieminen T, Kulmala M, Hõrrak U, Plass-Dülmer C (2015) Evolution of gaseous precursors and meteorological parameters during new particle formation events in the Central European boundary layer. Atmos Chem Phys Discuss 15(2):2305–2353. doi:10.5194/acpd-15-2305-2015, http://www.atmos-chem-phys-discuss.net/15/2305/2015/

  • Hanna SR (1968) A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum. J Atmos Sci 25(6):1026–1033

    Article  Google Scholar 

  • Hellmuth O (2006) Columnar modelling of nucleation burst evolution in the convective boundary layer-first results from a feasibility study Part I: Modelling approach. Atmos Chem Phys 6(12):4175–4214

    Article  Google Scholar 

  • Jaatinen A, Hamed A, Joutsensaari J, Mikkonen S, Birmili W, Wehner B, Spindler G, Wiedensohler A, Decesari S, Mircea M, Facchini MC, Junninen H, Kulmala M, Lehtined KEJ, Laaksonen A (2009) A comparison of new particle formation events in the boundary layer at three different sites in Europe. Boreal Environ Res 14:481–498

    Google Scholar 

  • Kannosto J, Lemmetty M, Virtanen A, Mäkelä J, Keskinen J, Junninen H, Hussein T, Aalto P, Kulmala M (2008) Mode resolved density of atmospheric aerosol particles. Atmos Chem Phys Discuss 8(2):7263–7288

    Article  Google Scholar 

  • Kolmogorov A (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  • Korhonen P, Kulmala M, Laaksonen A, Viisanen Y, McGraw R, Seinfeld J (1999) Ternary nucleation of \(H_{2}SO_{4}\), \(NH_{3}\), and \(H_{2}O\) in the atmosphere. J Geophys Res Atmos 104(D21):26,349–26,353

    Article  Google Scholar 

  • Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176

    Article  Google Scholar 

  • Kulmala M, Riipinen I, Sipilä M, Manninen HE, Petäjä T, Junninen H, Dal Maso M, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison RM, Hanson I, Leung C, Lehtined KEJ, Kerminen VM (2007) Toward direct measurement of atmospheric nucleation. Science 318(5847):89–92

    Article  Google Scholar 

  • Lumley L, Panofsky H (1964) The structure of atmospheric turbulence. Wiley, New York 239 pp

    Google Scholar 

  • Manninen HE, Petäjä T, Asmi E, Riipinen I, Nieminen T, Mikkilä J, Hõrrak U, Mirme A, Mirme S, Laakso L, Kerminen VM, Kulmala M (2009) Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Environ Res 14:591–605

    Google Scholar 

  • Nilsson ED, Kulmala M (1998) The potential for atmospheric mixing processes to enhance the binary nucleation rate. J Geophys Res Atmos 103(D1):1381–1389

    Article  Google Scholar 

  • Nilsson E, Rannik Ü, Kulmala M, Buzorius G, O’dowd C (2001) Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus B 53(4):441–461

    Article  Google Scholar 

  • Nojgaard JK, Nguyen QT, Glasius M, Sorensen LL (2012) Nucleation and Aitken mode atmospheric particles in relation to \(O_{3}\) and NOX at semirural background in Denmark. Atmos Environ 49:275–283. doi:10.1016/j.atmosenv.2011.11.040

    Article  Google Scholar 

  • O’Dowd C, McFiggans G, Creasey DJ, Pirjola L, Hoell C, Smith MH, Allan BJ, Plane J, Heard DE, Lee JD, Pilling MJ, Kulmala M (1999) On the photochemical production of new particles in the coastal boundary layer. Geophys Res Lett 26(12):1707–1710

    Article  Google Scholar 

  • O’Dowd C, Yoon Y, Junkermann W, Aalto P, Kulmala M, Lihavainen H, Viisanen Y (2009) Airborne measurements of nucleation mode particles II: boreal forest nucleation events. Atmos Chem Phys 9(3):937–944

    Article  Google Scholar 

  • Pirjola L, O’Dowd CD, Brooks IM, Kulmala M (2000) Can new particle formation occur in the clean marine boundary layer? J Geophys Res Atmos 105(D21):26,531–26,546

    Article  Google Scholar 

  • Ramanathan V, Crutzen P, Kiehl J, Rosenfeld D (2001a) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Lelieveld J, Mitra A, Althausen D, Anderson J, Andreae M, Cantrell W, Cass G, Chung C, Clarke AD, Coakley J, Collins W, Conant W, Dulac F, Heintzenberg J, Heymsfield A, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl J, Krishnamurti T, Lubin D, McFarquhar G, Novakov T, Ogren J, Podgorny I, Prather K, Priestly K, Prospero J, Quinn P, Rajeev K, Rasch P, Rupert SRS, Satheesh S, Shaw G, Sheridan P, Valero F (2001b) Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(D22):28,371–28,398

    Article  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Siebert H, Stratmann F, Wehner B (2004) First observations of increased ultrafine particle number concentrations near the inversion of a continental planetary boundary layer and its relation to ground-based measurements. Geophys Res Lett 31(9):L09102

  • Siebert H, Wehner B, Hellmuth O, Stratmann F, Boy M, Kulmala M (2007) New-particle formation in connection with a nocturnal low-level jet: observations and modeling results. Geophys Res Lett. doi:10.1029/2007GL029,891

  • Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin RL, Hyvärinen AP, Lihavainen H, Kulmala M (2010) The role of sulfuric acid in atmospheric nucleation. Science 327(5970):1243–1246

    Article  Google Scholar 

  • Spindler G, Grüner A, Müller K, Schlimper S, Herrmann H (2013) Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz-influence of air mass inflow, weather conditions and season. J Atmos Chem 70(2):165–195

    Article  Google Scholar 

  • Stratmann F, Siebert H, Spindler G, Wehner B, Althausen D, Heintzenberg J, Hellmuth O, Rinke R, Schmieder U, Seidel C et al (2003) New-particle formation events in a continental boundary layer: first results from the SATURN experiment. Atmos Chem Phys 3(5):1445–1459

    Article  Google Scholar 

  • Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, Jerusalem: 472 pp

  • van den Kroonenberg A, Martin S, Beyrich F, Bange J (2012) Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle. Boundary-Layer Meteorol 142(1):55–77

    Article  Google Scholar 

  • Weber AP, Friedlander SK (1997) In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J Aerosol Sci 28(2):179–192

    Article  Google Scholar 

  • Wehner B, Siebert H, Stratmann F, Tuch T, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M (2007) Horizontal homogeneity and vertical extent of new particle formation events. Tellus B 59(3):362–371

    Article  Google Scholar 

  • Wehner B, Siebert H, Ansmann A, Ditas F, Seifert P, Stratmann F, Wiedensohler A, Apituley A, Shaw R, Manninen H, Kulmala M (2010) Observations of turbulence-induced new particle formation in the residual layer. Atmos Chem Phys 10(9):4319–4330

    Article  Google Scholar 

  • Westin K, Boiko A, Klingmann B, Kozlov V, Alfredsson P (1994) Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J Fluid Mech 281:193–218

    Article  Google Scholar 

  • Wiedensohler A, Covert DS, Swietlicki E, Aalto P, Heintzenberg J, Leck C (1996) Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus B 48(2):213–222

    Article  Google Scholar 

  • Wiedensohler A, Cheng Y, Nowak A, Wehner B, Achtert P, Berghof M, Birmili W, Wu Z, Hu M, Zhu T, Takegawa N, Kita K, Kondo Y, Lou S, Hofzumahaus A, Holland F, Wahner A, Gunthe S, Rose D, Su H, Pöschl U (2009) Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: a case study for regional air pollution in northeastern China. J Geophys Res Atmos 114(D2):D00G08

    Google Scholar 

  • Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S, O’Dowd C, Marinoni A, Horn HG, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao C, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech 5:657–685

    Article  Google Scholar 

  • Wildmann N, Mauz M, Bange J (2013) Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA). Atmos Meas Tech 6:2101–2113. doi:10.5194/amt-6-2101-2013

    Article  Google Scholar 

  • Wildmann N, Hofsäß M, Weimer F, Joos A, Bange J (2014a) MASC-a small remotely piloted aircraft (RPA) for wind energy research. Adv Sci Res 11(1):55–61

    Article  Google Scholar 

  • Wildmann N, Ravi S, Bange J (2014b) Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA). Atmos Meas Tech 7(4):1027–1041

    Article  Google Scholar 

  • Wyngaard J, LeMone M (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37(7):1573–1585

    Article  Google Scholar 

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the UAS pilots Lutz Bretschneider and Markus Auer for flying ALADINA and MASC safely over Melpitz. We thank Achim Grüner for technical support during preparing and conducting the campaigns in Melpitz. Thanks also to Johannes Größ for providing the NAIS-data from Melpitz. We thank Joe Smith and Ralf Käthner for the ground-crew support. This work is supported by the Deutsche Forschungsgemeinschaft (LA 2907/5-1, WI 1449/22-1, BA 1988/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Platis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platis, A., Altstädter, B., Wehner, B. et al. An Observational Case Study on the Influence of Atmospheric Boundary-Layer Dynamics on New Particle Formation. Boundary-Layer Meteorol 158, 67–92 (2016). https://doi.org/10.1007/s10546-015-0084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0084-y

Keywords

Navigation