Skip to main content
Log in

A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a parallel algorithm for calculating determinants of matrices in arbitrary precision arithmetic on computer clusters. This algorithm limits data movements between the nodes and computes not only the determinant but also all the minors corresponding to a particular row or column at a little extra cost, and also the determinants and minors of all the leading principal submatrices at no extra cost. We implemented the algorithm in arbitrary precision arithmetic, suitable for very ill conditioned matrices, and empirically estimated the loss of precision. In our scenario the cost of computation is bigger than that of data movement. The algorithm was applied to studies of Riemann’s zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Analytic continuation is a technique to extend the domain of a given analytic function. In the case of zeta function the defining series diverges for \({\mathrm {Re}}(s) \le 1\) yet the functional equation extends the domain of \(\zeta \) to the whole complex plane except for \(s=1\), which is its only pole.

  2. Dodgson is better known as Lewis Carroll.

References

  1. Abdelmalek, S., Kouachi, S.: Condensation of determinants. ArXiv: http://arxiv.org/abs/0712.0822 (2007)

  2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180, 012037 (2009)

    Article  Google Scholar 

  3. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in numerical linear algebra. SIAM J. Matrix Anal. Appl. 32, 866–901 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beliakov, G., Matiyasevich, Yu.: Approximation of Riemann’s zeta function by finite Dirichlet series: multiprecision numerical approach. Exp. Math. 24, 1–12 (2015). doi:10.1080/10586458.2014.976801, Preliminary version. http://arxiv.org/abs/1402.5295

  5. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  6. Borwein, P., Choi, S., Rooney, B., et al. (eds.): The Riemann hypothesis: a resource for the afficionado and virtuoso alike. In: CMS Books in Mathematics. Springer, New York (2008)

  7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cannon, L.E.: A cellular computer to implement the Kalman filter algorithm. PhD thesis, Montana State University, Bozeman (1969)

  9. Clay Institute: The millennium prize problems (2013). http://www.claymath.org/millennium-problems. Accessed 15 Dec 2014

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34, A206–A239 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodgson, C.L.: Condensation of determinants. Proc. Royal Soc. Lond. 15, 150–155 (1866)

  13. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann P. MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 13:1–13:15 (2007)

  14. van de Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication algorithm. Concurr. Comput. Pract. Exp. 9, 255–274 (1997)

    Article  Google Scholar 

  15. GNU. GNUMP library (2013). http://gmplib.org. Accessed 10 June 2013

  16. Grigori, L., Demmel, J., Xiang, H.: CALU: a communication optimal LU factorization algorithm. SIAM J. Matrix Anal. Appl. 32, 1317–1350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haidar, A., Ltaief, H., YarKhan, A., Dongarra, J.: Analysis of dynamically scheduled tile algorithms for dense linear algebra on multicore architectures. Concurr. Comput. Pract. Exp. 24, 305–321 (2011)

    Article  Google Scholar 

  18. Haque, S.A., Moreno Maza, M.: Determinant computation on the GPU using the condensation method. J. Phys. Conf. Ser. 341, 012031 (2012)

    Article  Google Scholar 

  19. van der Hoeven, J.: Ball arithmetic. In: Beckmann, A., Gaßner, C., Löwe, B. (eds.) Proceedings Logical approaches to Barriers in Computing and Complexity, pp. 179–208, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald. http://www.texmacs.org/joris/ball/ball-abs.html

  20. van der Hoeven, J., Lecerf, G., Quintin, G.: Modular SIMD arithmetic in Mathemagix (2014). arXiv:1407.3383

  21. van der Hoeven, J., Lecerf, G., Mourain, B., et al.: Mathemagix, 2012–2014. Software. http://www.mathemagix.org. Accessed 15 Dec 2014

  22. INRIA. MPFI library. https://gforge.inria.fr/projects/mpfi/ (2013). Accessed 10 June 2013

  23. Johansson, F.: Arb (2013). http://fredrikj.net/arb/. Accessed 15 Dec 2014

  24. Kouya, T.: MPIGMP library (2013). http://na-inet.jp/na/. Accessed 10 June 2013

  25. Lu, M.: GPUprec: supporting high precision on graphics processors. http://code.google.com/p/gpuprec/ (2013). Accessed 10 June 2013

  26. von Mangoldt, H.: Zu Riemanns Abhandlung ‘Über die Anzhal der Primzahlen unter einer gegebenen Grösse’. J. Reine Agew. Math. 114, 255–305 (1985)

    Google Scholar 

  27. Matiyasevich, Yu.: A posteriori interval analysis. Lect. Notes Comput. Sci. 204, 328–334 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matiyasevich, Yu.: New conjectures about zeroes of Riemann’s zeta function. Research report MA12-03 of the Department of Mathematics of the University of Leicester (2012). http://www2.le.ac.uk/departments/mathematics/research/research-reports-2/reports-2012/MA12_03Matiyasevich.pdf/view and from [32]. Accessed 15 Dec 2014

  29. Matiyasevich, Yu.: Calculating approximate values of zeros of Riemann’s zeta function via interpolating determinants. I. Funct. Anal. Other Math. 4(1) (2012) (to appear)

  30. Matiyasevich, Yu.: Calculating approximate values of zeros of Riemann’s zeta function via interpolating determinants. II. Funct. Anal. Other Math. 4(2) (2012) (to appear)

  31. Matiyasevich, Yu.: Calculation of Riemann’s zeta function via interpolating determinants. Preprint 2013–18 of Max Planck Institute for Mathematics in Bonn (2013). http://www.mpim-bonn.mpg.de/preblob/5368 and from [32]. Accessed 15 Dec 2014

  32. Matiyasevich, Yu.: An artless method, ongoing project. http://logic.pdmi.ras.ru/~yumat/personaljournal/artlessmethod/. Accessed 15 Dec 2014

  33. Matiyasevich, Yu., Beliakov, G.: Zeroes of Riemann’s zeta function on the critical line with 20,000 decimal digits accuracy, Research Data Australia (2013). http://hdl.handle.net/10536/DRO/DU:30051725. Accessed 15 Dec 2014

  34. Nakayama, T.: CUMP library. http://www.hpcs.cs.tsukuba.ac.jp/~nakayama/cump/ (2013). Accessed 10 June 2013

  35. Nakayama, T., Takahashi, D.: Implementation of multiple-precision floating-point arithmetic library for GPU computing. In: Proceedings 23rd IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2011), pp. 343–349. IASTED Calgary, Canada (2011)

  36. Poulson, J., Marker, B., van de Geijn, R., Hammond, J., Romero, N.: Elemental: a new framework for distributed memory dense matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

  37. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)

  38. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in MPICH. Int. J. High Perform. Comput. Appl. 19, 49–66 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support by the Victorian Partnership in Advanced Computing (VPAC) and Monash e-research centre for providing computing resources at their clusters, and specifically Mr. S. Michnowicz for his help in developing MPI parallelization code. Part of the calculations was performed on the “Chebyshev” supercomputer of Moscow State University Supercomputing Center. The work of the second author was partly supported by the programme of fundamental research “Modern problems of theoretical mathematics” of the Mathematics Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov.

Additional information

Communicated by Axel Ruhe.

To the memory of Hans Riesel 1929–2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beliakov, G., Matiyasevich, Y. A parallel algorithm for calculation of determinants and minors using arbitrary precision arithmetic. Bit Numer Math 56, 33–50 (2016). https://doi.org/10.1007/s10543-015-0547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0547-z

Keywords

Mathematics Subject Classification

Navigation