Skip to main content
Log in

Multirate infinitesimal step methods for atmospheric flow simulation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The numerical solution of the Euler equations requires the treatment of processes in different temporal scales. Sound waves propagate fast compared to advective processes. Based on a spatial discretisation on staggered grids, a multirate time integration procedure is presented here generalising split-explicit Runge-Kutta methods. The advective terms are integrated by a Runge-Kutta method with a macro stepsize restricted by the CFL number. Sound wave terms are treated by small time steps respecting the CFL restriction dictated by the speed of sound.

Split-explicit Runge-Kutta methods are generalised by the inclusion of fixed tendencies of previous stages. The stability barrier for the acoustics equation is relaxed by a factor of two.

Asymptotic order conditions for the low Mach case are given. The relation to commutator-free exponential integrators is discussed. Stability is analysed for the linear acoustic equation. Numerical tests are executed for the linear acoustics and the nonlinear Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 135, 119–143 (1966)

    Article  MathSciNet  Google Scholar 

  2. Celledoni, E.: Eulerian and semi-Lagrangian schemes based on commutator-free exponential integrators. In: CRM Proc. Lecture Notes: Group Theory and Numerical Analysis, vol. 39, pp. 77–90. Amer. Math. Soc., Providence (2005)

    Google Scholar 

  3. Celledoni, E., Kometa, B.K.: Semi-Lagrangian exponential integrators for convection dominated problems. Tech. Report 9/08, Norwegian Institute of Science and Technology (2008). J. Sci. Comput. (to appear)

  4. Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie group methods. Future Gener. Comput. Syst. 19, 341–352 (2003)

    Article  Google Scholar 

  5. Durran, D.R.: Improving the anelastic approximation. J. Atmos. Sci. 46, 1453–1461 (1989)

    Article  Google Scholar 

  6. Durran, D.R.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York (1999)

    Google Scholar 

  7. Gassmann, A.: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteorol. Atmos. Phys. 88, 23–38 (2005)

    Article  Google Scholar 

  8. Gear, C., Wells, R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gill, A.: Atmosphere–Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  10. Günther, M., Rentrop, P.: Multirate ROW methods and latency of electric circuits. Appl. Numer. Math. 13(1–3), 83–102 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hochbruck, M., Ostermann, A.: Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math. 53, 323–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Knoth, O., Wolke, R.: Implicit–explicit Runge-Kutta methods for computing atmospheric reactive flows. Appl. Numer. Math. 28, 327–341 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ogura, Y., Phillips, N.: Scale analysis for deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179 (1962)

    Article  Google Scholar 

  15. Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A 39, 5585–5599 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Reich, S., Hundertmark, T.: A regularization approach for a vertical slice model and semi-Lagrangian Stormer-Verlet time-stepping. Q. J. R. Meteorol. Soc. 133, 1575–1587 (2007)

    Google Scholar 

  17. Skamarock, W., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G.: A description of the advanced research wrf version 2. Tech. Report TN-468, NCAR, Boulder, Colorado (2005)

  18. Skamarock, W.C., Klemp, J.B.: The stability of time split numerical methods for the hydrostatic and non-hydrostatic elastic equations. Mon. Weather Rev. 120, 2109–2127 (1992)

    Article  Google Scholar 

  19. Skamarock, W.C., Klemp, J.B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Skelboe, S.: Stability properties of backward differentiation multirate formulas. Appl. Numer. Math. 5, 151–160 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Skelboe, S., Anderson, P.: Stability properties of backward Euler multirate formulas. SIAM J. Sci. Stat. Comput. 10, 1000–1009 (1989)

    Article  MATH  Google Scholar 

  22. Strehmel, K.: Stabilitätseigenschaften adaptiver Runge-Kutta-Verfahren. Z. Angew. Math. Mech. 61, 253–260 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Strehmel, K., Weiner, R.: Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden. Computing 29, 153–165 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wicker, L.J., Skamarock, W.: A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing. Mon. Weather Rev. 126, 1992–1999 (1998)

    Article  Google Scholar 

  25. Wicker, L.J., Skamarock, W.: Time splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 130, 2088–2097 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wensch.

Additional information

Communicated by Stig Skelboe.

This work was supported under the DFG priority program 1276, Metström: Multiple scales in fluid mechanics and meteorology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wensch, J., Knoth, O. & Galant, A. Multirate infinitesimal step methods for atmospheric flow simulation. Bit Numer Math 49, 449–473 (2009). https://doi.org/10.1007/s10543-009-0222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-009-0222-3

Keywords

Mathematics Subject Classification (2000)

Navigation