Skip to main content
Log in

Glutaredoxin1 protects neuronal cells from copper-induced toxicity

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GRX:

Glutaredoxin1

GSH:

Glutathione

ROS:

Reactive oxygen species

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

ALS:

Amyotrophic lateral sclerosis

SOD1:

Superoxide dismutase 1

MEF:

Mouse embryonic fibroblast

MAP2:

Microtubule-associated protein 2

DBH:

Dopamine-β-hydroxylase

MBD:

Metal binding domain

TGN:

TransGolgi network

References

  • Akterin S, Cowburn RF, Miranda-Vizuete A, Jimenez A, Bogdanovic N, Winblad B, Cedazo-Minguez A (2005) Involvement of glutaredoxin-1 and thioredoxin-1 in β-amyloid toxicity and Alzheimer’s disease. Cell Death Differ 13:1454–1465

    Article  PubMed  Google Scholar 

  • Allen EM, Mieyal JJ (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 17:1748–1763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aon-Bertolino ML, Romero JI, Galeano P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH, Capani F (2011) Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta 1810:93–110

    Article  CAS  PubMed  Google Scholar 

  • Arciello M, Rotilio G, Rossi L (2005) Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage. Biochem Biophys Res Commun 327:454–459

    Article  CAS  PubMed  Google Scholar 

  • Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Rad Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  • Balijepalli S, Tirumalai PS, Swamy KV, Boyd MR, Mieyal JJ, Ravindranath V (1999) Rat brain thioltransferase: regional distribution, immunological characterization, and localization by fluorescent in situ hybridization. J Neurochem 72:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev 3:205–214

    CAS  Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    CAS  PubMed  Google Scholar 

  • Bouldin SD, Darch MA, Hart PJ, Outten CE (2012) Redox properties of the disulfide bond of human Cu, Zn superoxide dismutase and the effects of human glutaredoxin 1. Biochem J 446:59–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brose J, La Fontaine S, Wedd AG, Xiao Z (2014) Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Metallomics 6:793–808

    Article  CAS  PubMed  Google Scholar 

  • Cater MA, McInnes KT, Li Q-X, Volitakis I, La Fontaine S, Mercer JFB, Bush AI (2008) Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms. Biochem J 412:141–152

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino M, Amori I, Pesaresi MG, Ferri A, Nencini M, Carri MT (2008) Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem 283:866–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Benedetto ML, Capo CR, Ferri A, Valle C, Polimanti R, Carri MT, Rossi L (2014) Glutaredoxin 1 is a major player in copper metabolism in neuroblastoma cells. Biochim Biophys Acta 1840:255–261

    Article  PubMed  Google Scholar 

  • Diwakar L, Kenchappa RS, Annepu J, Saeed U, Sujanitha R, Ravindranath V (2006) Down-regulation of glutaredoxin by estrogen receptor antagonist renders female mice susceptible to excitatory amino acid mediated complex I inhibition in CNS. Brain Res 1125:176–184

    Article  CAS  PubMed  Google Scholar 

  • Diwakar L, Kenchappa RS, Annepu J, Ravindranath V (2007) Downregulation of glutaredoxin but not glutathione loss leads to mitochondrial dysfunction in female mice CNS: implications in excitotoxicity. Neurochem Int 51:37–46

    Article  CAS  PubMed  Google Scholar 

  • Freedman JH, Peisach J (1989) Intracellular copper transport in cultured hepatoma cells. Biochem Biophys Res Commun 164:134–140

    Article  CAS  PubMed  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    CAS  PubMed  Google Scholar 

  • Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S (2012) Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 287:26678–26687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho Y-S, Xiong Y, Ho DS, Gao J, Chua BHL, Pai H, Mieyal JJ (2007) Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Rad Biol Med 43:1299–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ke B-X, Llanos RM, Wright M, Deal Y, Mercer JFB (2006) Alteration of copper physiology in mice overexpressing the human Menkes protein ATP7A. Am J Physiol Regul Integr Comp Physiol 290:R1460–R1467

    Article  CAS  PubMed  Google Scholar 

  • Kenchappa RS, Ravindranath V (2003) Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J. 17:717–719

    CAS  PubMed  Google Scholar 

  • Kenchappa RS, Diwakar L, Boyd MR, Ravindranath V (2002) Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury. J Neurosci 22:8402–8410

    CAS  PubMed  Google Scholar 

  • Kenchappa RS, Diwakar L, Annepu J, Ravindranath V (2004) Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration. FASEB J 18:1102–1104

    PubMed  Google Scholar 

  • Kim B-E, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  • La Fontaine S, Mercer JFB (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463:149–167

    Article  PubMed  Google Scholar 

  • Lillig CH, Berndt C (2013) Glutaredoxins in thiol/disulfide exchange. Antioxid Redox Signal 18:1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Lim CM, Cater MA, Mercer JF, La Fontaine S (2006) Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem Biophys Res Commun 348:428–436

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

    Article  CAS  PubMed  Google Scholar 

  • Maryon EB, Molloy SA, Kaplan JH (2013) Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol 304:C768–C779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matus A (1991) Microtubule-associated proteins and neuronal morphogenesis. J Cell Sci Suppl 15:61–67

    Article  CAS  PubMed  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein s-glutathionylation. Antioxid Redox Signal 10:1941–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW (2011) Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 11:1717–1745

    Article  PubMed  Google Scholar 

  • Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R (2012) Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson’s disease. Antioxid Redox Signal 17:1676–1693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabens Liedhegner EA, Gao XH, Mieyal JJ (2012) Mechanisms of altered redox regulation in neurodegenerative diseases—focus on S-glutathionylation. Antioxid Redox Signal 16:543–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saeed U, Durgadoss L, Valli RK, Joshi DC, Joshi PG, Ravindranath V (2008) Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases. PLoS One 3:e2459

    Article  PubMed Central  PubMed  Google Scholar 

  • Singleton WC, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, Taylor PE, Ke BX, Richardson DR, Mercer JF, La Fontaine S (2010) Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 285:27111–27121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watt NT, Hooper NM (2001) The response of neurones and glial cells to elevated copper. Brain Res Bull 55:219–224

    Article  CAS  PubMed  Google Scholar 

  • Wolyniec K, Levav-Cohen Y, Jiang YH, Haupt S, Haupt Y (2013) The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress. Oncogene 32:3510–3519

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Brose J, Schimo S, Ackland SM, La Fontaine S, Wedd AG (2011) Unification of the copper(I) binding affinities of the metallo-chaperones Atx1, Atox1 and related proteins: detection probes and affinity standards. J Biol Chem 286:11047–11055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Kuo CC, Chiu AW, Feng J (2012) Prediction of S-glutathionylated proteins progression in Alzheimer’s transgenic mouse model using principle component analysis. J Alzheimers Dis 30:919–934

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC) (M.A.C, N.S.C. S.L) and Deakin University (M.A.C, S.L). We thank Caryn Outten (University of South Carolina, USA) for providing plasmid constructs encoding the human GRX1; Ye-Shih Ho (Wayne State University, USA) for providing the GRX1 KO MEFs; Irene Volitakis for ICP-MS analysis; Ross McKirdy, Kelly McInnes and Alison Blake for technical support; and Jens Brose and Anthony Wedd (Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne) for helpful scientific discussions.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon La Fontaine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cater, M.A., Materia, S., Xiao, Z. et al. Glutaredoxin1 protects neuronal cells from copper-induced toxicity. Biometals 27, 661–672 (2014). https://doi.org/10.1007/s10534-014-9748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9748-1

Keywords

Navigation