Skip to main content

Advertisement

Log in

Outcropping reef ledges drive patterns of epibenthic assemblage diversity on cross-shelf habitats

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Seafloor habitats on continental shelf margins are increasingly being the subject of worldwide conservation efforts to protect them from human activities due to their biological and economic value. Quantitative data on the epibenthic taxa which contributes to the biodiversity value of these continental shelf margins is vital for the effectiveness of these efforts, especially at the spatial resolution required to effectively manage these ecosystems. We quantified the diversity of morphotype classes on an outcropping reef system characteristic of the continental shelf margin in the Flinders Commonwealth Marine Reserve, southeastern Australia. The system is uniquely characterized by long linear outcropping ledge features in sedimentary bedrock that differ markedly from the surrounding low-profile, sand-inundated reefs. We characterize a reef system harboring rich morphotype classes, with a total of 55 morphotype classes identified from the still images captured by an autonomous underwater vehicle. The morphotype class Cnidaria/Bryzoa/Hydroid matrix dominated the assemblages recorded. Both α and β diversity declined sharply with distance from nearest outcropping reef ledge feature. Patterns of the morphotype classes were characterized by (1) morphotype turnover at scales of 5 to 10s m from nearest outcropping reef ledge feature, (2) 30 % of morphotype classes were recorded only once (i.e. singletons), and (3) generally low levels of abundance (proportion cover) of the component morphotype class. This suggests that the assemblages in this region contain a considerable number of locally rare morphotype classes. This study highlights the particular importance of outcropping reef ledge features in this region, as they provide a refuge against sediment scouring and inundation common on the low profile reef that characterizes this region. As outcropping reef features, they represent a small fraction of overall reef habitat yet contain much of the epibenthic faunal diversity. This study has relevance to conservation planning for continental shelf habitats, as protecting a single, or few, areas of reef is unlikely to accurately represent the geomorphic diversity of cross-shelf habitats and the morphotype diversity that is associated with these features. Equally, when designing monitoring programs these spatially-discrete, but biologically rich outcropping reef ledge features should be considered as distinct components in stratified sampling designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Althaus F, Williams A, Schlacher T, Kloser R, Green M, Barker B, Bax N, Brodie P, Hoenlinger-Schlacher M (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Prog Ser 397:279–294. doi:10.3354/meps08248

    Article  Google Scholar 

  • Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schönberg CHL, Stuart-Smith R, Barrett N, Edgar G, Colquhoun J, Tran M, Jordan A, Rees T, Gowlett-Holmes K (2015) A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10:e0141039. doi:10.1371/journal.pone.0141039

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Gorley R, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, United Kingdom

    Google Scholar 

  • Andrew N (1999) Under southern seas: the ecology of Australia’s rocky reefs. UNSW Press, Sydney, Australia

    Google Scholar 

  • Baillon S, Hamel J-F, Wareham VE, Mercier A (2012) Deep cold-water corals as nurseries for fish larvae. Fron Ecol Environ 10:351–356. doi:10.1890/120022

    Article  Google Scholar 

  • Bax NJ, Williams A (2001) Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Mar Freshw Res 52:491–512. doi:10.1071/MF00003

    Article  Google Scholar 

  • Bell JJ, Barnes DKA (2000) The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. J Mar Biol Assoc Uk 80:707–718. doi:10.1017/S0025315400002538

    Article  Google Scholar 

  • Bell JJ, Barnes DKA (2001) Sponge morphological diversity: a qualitative predictor of species diversity? Aquat Conserv 11:109–121. doi:10.1002/Aqc.436

    Article  Google Scholar 

  • Bo M, Canese S, Spaggiari C, Pusceddu A, Bertolino M, Angiolillo M, Giusti M, Loreto MF, Salvati E, Greco S, Bavestrello G (2012) Deep coral oases in the South Tyrrhenian Sea. PLoS ONE 7:e49870. doi:10.1371/journal.pone.0049870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan TL, Metaxas A (2007) Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific Continental Margins of North America. Mar Ecol Prog Ser 330:113–126

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50. doi:10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Cerrano C, Danovaro R, Gambi C, Pusceddu A, Riva A, Schiaparelli S (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodiver Cons 19:153–167. doi:10.1007/s10531-009-9712-5

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100. doi:10.1016/j.rse.2009.01.015

    Article  Google Scholar 

  • Cudaback CN, Washburn L, Dever E (2005) Subtidal inner-shelf circulation near Point Conception, California. J Geophys Res Oceans 110. doi:10.1029/2004JC002608

  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. doi:10.1126/science.1241981

    Article  PubMed  Google Scholar 

  • Department of Environment (2015) Commonwealth marine reserves. http://www.environment.gov.au/topics/marine/marine-reserves. Accessed 8 May 2015

  • Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29. doi:10.3354/meps296013

    Article  Google Scholar 

  • Fromont J, Vanderklift M, Kendrick G (2006) Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodivers Conserv 15:3731–3750. doi:10.1007/s10531-004-1871-9

    Article  Google Scholar 

  • Fromont J, Althaus F, McEnnulty F, Williams A, Salotti M, Gomez O, Gowlett-Holmes K (2012) Living on the edge: the sponge fauna of Australia’s southwestern and northwestern deep continental margin. Hydrobiologia 687:127–142. doi:10.1007/s10750-011-0845-7

    Article  Google Scholar 

  • Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316–321. doi:10.1016/S0169-5347(98)01365-2

    Article  CAS  PubMed  Google Scholar 

  • Gori A, Grover R, Orejas C, Sikorski S, Ferrier-Pagès C (2014) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea Deep Sea Res Pt II: Topical Studies. Oceanography 99:42–50. doi:10.1016/j.dsr2.2013.06.007

    CAS  Google Scholar 

  • Grant J, Turner SJ, Legendre P, Hume TM, Bell RG (1997) Patterns of sediment reworking and transport over small spatial scales on an intertidal sandflat, Manukau Harbour, New Zealand. J Exp Mar Bio Ecol 216:33–50. doi:10.1016/S0022-0981(97)00089-0

    Article  Google Scholar 

  • Grantham BA, Eckert GL, Shanks AL (2003) Dispersal potential of marine invertebrates in diverse habitats. Ecol Appl 13:108–116

    Article  Google Scholar 

  • Harris PT, Hughes MG (2012) Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach. Mar Ecol Prog Ser 449:13–25. doi:10.3354/Meps09463

    Article  Google Scholar 

  • Heyward A, Fromont J, Schönberg CHL, Colquhoun J, Radford B, Gomez O (2010) The sponge gardens of Ningaloo Reef, Western Australia. Open Mar Biol 4:3–11. doi:10.2174/1874450801004010003

    Article  Google Scholar 

  • Hill NA, Barrett N, Lawrence E, Hulls J, Dambacher JM, Nichol S, Williams A, Hayes KR (2014a) Quantifying fish assemblages in large, offshore marine protected areas: an australian case study. PLoS ONE 9:e110831. doi:10.1371/journal.pone.0110831

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill NA, Lucieer V, Barrett NS, Anderson TJ, Williams SB (2014b) Filling the gaps: predicting the distribution of temperate reef biota using high resolution biological and acoustic data. Estuar Coast Shelf Sci 147:137–147. doi:10.1016/j.ecss.2014.05.019

    Article  Google Scholar 

  • Hooper JNA, Kennedy JA (2002) Small-scale patterns of sponge biodiversity (Porifera) from the Sunshine Coast reefs, eastern Australia. Inv Syst 16:637–653. doi:10.1071/IS02015

    Article  Google Scholar 

  • Huang Z, Brooke B, Li J (2011) Performance of predictive models in marine benthic environments based on predictions of sponge distribution on the Australian continental shelf. Ecol Inf 6:205–216. doi:10.1016/j.ecoinf.2011.01.001

    Article  Google Scholar 

  • Huang Z, Siwabessy J, Nichol SL, Brooke BP (2014) Predictive mapping of seabed substrata using high-resolution multibeam sonar data: a case study from a shelf with complex geomorphology. Mar Geol 357:37–52. doi:10.1016/j.margeo.2014.07.012

    Article  Google Scholar 

  • Ierodiaconou D, Monk J, Rattray A, Laurenson L, Versace VL (2011) Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Cont Shelf Res 31:S28–S38. doi:10.1016/j.csr.2010.01.012

    Article  Google Scholar 

  • James L (2014) Distribution of deep-reef sessile benthic assemblages in temperate eastern Australia Masters Thesis, University of Tasmania

  • Keough MJ, Downes BJ (1982) Recruitment of marine invertebrates: the role of active larval choices and early mortality. Oecologia 54:348–352. doi:10.1007/BF00380003

    Article  Google Scholar 

  • Langlois TJ, Anderson MJ, Babcock RC (2006) Inconsistent effects of reefs on different size classes of macrofauna in adjacent sand habitats. J Exp Mar Biol Ecol 334:269–282. doi:10.1016/j.jembe.2006.02.001

    Article  Google Scholar 

  • Lawrence E, Hayes KR, Lucieer VL, Nichol SL, Dambacher JM, Hill NA, Barrett N, Kool J, Siwabessy J (2015) Mapping habitats and developing baselines in offshore marine reserves with little prior knowledge: a critical evaluation of a new approach. PLoS ONE 10:e0141051. doi:10.1371/journal.pone.0141051

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucieer V (2013) Broad-scale analysis of multibeam acoustic data from the Flinders Commonwealth Marine Reserve. University of Tasmania, Institute for Marine and Antarctic Studies

    Google Scholar 

  • McEnnulty FR, Gowlett-Holmes KL, Williams A, Althaus F, Fromont J, Poore GCB, O’Hara TD, Marsh L, Kott P, Slack-Smith S, Alderslade P, Kitahara MV (2011) The deepwater megabenthic invertebrates on the western continental margin of Australia (100–1100 m depths): composition, distribution and novelty. Rec West Aust Mus Suppl 80:1–191

    Article  Google Scholar 

  • Mohn C, Rengstorf A, White M, Duineveld G, Mienis F, Soetaert K, Grehan A (2014) Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog Oceanog 122:92–104. doi:10.1016/j.pocean.2013.12.003

    Article  Google Scholar 

  • Monk J (2014) How long should we ignore imperfect detection of species in the marine environment when modelling their distribution? Fish Fish 15:352–358. doi:10.1111/faf.12039

    Article  Google Scholar 

  • Monk J, Ierodiaconou D, Bellgrove A, Harvey E, Laurenson L (2011) Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability. Cont Shelf Res 31:S17–S27. doi:10.1016/j.csr.2010.02.012

    Article  Google Scholar 

  • Nichol S, Anderson T, McArthur M, Heap A, Siwabessy P, Brooke B (2009) Southeast Tasmania temperate reef survey post-survey report Record 2009/43. Geoscience Australia

  • Paiva PC (2001) Spatial and temporal variation of a nearshore benthic community in southern Brazil: implications for the design of monitoring programs. Estuar Coast Shelf Sci 52:423–433. doi:10.1006/ecss.2001.0763

    Article  Google Scholar 

  • Poore GCB, Avery L, Błażewicz-Paszkowycz M, Browne J, Bruce N, Gerken S, Glasby C, Greaves E, McCallum A, Staples D, Syme A, Taylor J, Walker-Smith G, Warne M, Watson C, Williams A, Wilson R, Woolley S (2014) Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity. Mar Biodiv:1–16 doi:10.1007/s12526-014-0255-y

  • Post AL (2008) The application of physical surrogates to predict the distribution of marine benthic organisms. Ocean Coast Manag 51:161–179. doi:10.1016/j.ocecoaman.2007.04.008

    Article  Google Scholar 

  • Przeslawski R, Alvarez B, Battershill C, Smith T (2014) Sponge biodiversity and ecology of the Van Diemen Rise and eastern Joseph Bonaparte Gulf, northern Australia. Hydrobiologia 730:1–16. doi:10.1007/s10750-013-1799-8

    Article  Google Scholar 

  • R Core Development Team (2014) R: a language and environment for statistical computing

  • Ribes M, Coma R, Rossi S (2003) Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser 254:141–150. doi:10.3354/meps254141

    Article  CAS  Google Scholar 

  • Richardson AJ, Poloczanska ES (2008) Under-resourced, under threat. Science 320:1294–1295. doi:10.1126/science.1156129

    Article  CAS  PubMed  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284. doi:10.1126/science.1067728

    Article  CAS  PubMed  Google Scholar 

  • Schlacher TA, Schlacher-Hoenlinger MA, Althaus F, Hooper JNA, Kloser R (2007) Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Mar Ecol Prog Ser 340:73–88. doi:10.3354/meps340073

    Article  Google Scholar 

  • Schönberg C, Fromont J (2012) Sponge gardens of Ningaloo Reef (Carnarvon Shelf, Western Australia) are biodiversity hotspots. Hydrobiologia 687:143–161. doi:10.1007/s10750-011-0863-5

    Article  Google Scholar 

  • Schultz AL, Malcolm HA, Bucher DJ, Smith SDA (2012) Effects of reef proximity on the structure of fish assemblages of unconsolidated substrata. PLoS ONE 7:e49437. doi:10.1371/journal.pone.0049437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DL, Olsen AR (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278. doi:10.1198/016214504000000250

    Article  Google Scholar 

  • Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeog 36:1111–1128. doi:10.1111/j.1365-2699.2008.02062.x

    Article  Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112. doi:10.1111/gcb.12394

    Article  PubMed  Google Scholar 

  • Waller RG, Scanlon KM, Robinson LF (2011) Cold-water coral distributions in the Drake Passage area from towed camera observations—initial interpretations. PLoS ONE 6:e16153. doi:10.1371/journal.pone.0016153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Bax NJ (2001) Delineating fish-habitat associations for spatially based management: an example from the south-eastern Australian continental shelf. Mar Freshw Res 52:513–536. doi:10.1071/MF00017

    Article  Google Scholar 

  • Williams A, Althaus F, Dunstan PK, Poore GCB, Bax NJ, Kloser RJ, McEnnulty FR (2010) Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Mar Ecol 31:222–236. doi:10.1111/j.1439-0485.2009.00355.x

    Article  Google Scholar 

  • Williams SB, Pizarro OR, Jakuba MV, Johnson CR, Barrett NS, Babcock RC, Kendrick GA, Steinberg PD, Heyward AJ, Doherty PJ, Mahon I, Johnson-Roberson M, Steinberg D, Friedman A (2012) Monitoring of benthic reference sites. IEEE Rob Auto Mag 19:73–84. doi:10.1109/MRA.2011.2181772

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded through the National Environmental Research Program (NERP) funded by the Australian Government. The NERP Marine Biodiversity Hub is a collaborative partnership between the University of Tasmania, CSIRO Wealth from Oceans Flagship, Geoscience Australia, Australian Institute of Marine Science and Museum Victoria. Justin Hulls (UTas) provided significant technical support for field surveys and interrogation of AUV imagery. We would like to thank Oscar Pizarro, Ariell Friedman, Andrew Durrant and staff at the Australian Centre for Field Robotics (ACFR) University of Sydney for access to and running the AUV Sirius. AUV data was sourced from the Integrated Marine Observing System (IMOS) - IMOS is a national collaborative research infrastructure, supported by Australian Government. Ian Atkinson and Olivia Wilson (Geoscience Australia) are acknowledged for their assistance in the acquisition and processing of the multibeam sonar data. Emma Lawrence (CSIRO) is thanked for undertaking the AUV sampling design. Thanks also to Nic Bax, two anonymous reviewers and the Editor for their constructive comments on an early version of the paper. SN and JS publish with permission of the CEO, Geoscience Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquomo Monk.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 654 kb)

Supplementary material 2 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monk, J., Barrett, N.S., Hill, N.A. et al. Outcropping reef ledges drive patterns of epibenthic assemblage diversity on cross-shelf habitats. Biodivers Conserv 25, 485–502 (2016). https://doi.org/10.1007/s10531-016-1058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1058-1

Keywords

Navigation