Skip to main content

Advertisement

Log in

Genetic diversity of native and introduced populations of the invasive house crow (Corvus splendens) in Asia and Africa

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The common house crow (Corvus splendens) is one of the best known and most wide spread species of the family Corvidae. It is a successful invasive species able to exploit urban environments, well removed from its natural distribution. It is considered a pest as it attains high population densities, can cause serious economic losses and has many adverse effects on native fauna and flora, including predation, competitive displacement and disease transmission. Little genetic research on the house crow has been undertaken so we have only a limited understanding of its natural genetic population structure and invasion history. In this study, we employ microsatellite and mitochondrial DNA markers to assess genetic diversity, phylogeography and population structure of C. splendens within its native range represented by Sri Lanka and Bangladesh and introduced range represented by Malaysia, Singapore, Kenya and South Africa. We found high levels of genetic diversity in some of the invasive populations for which multiple invasions are proposed. The lowest genetic diversity was found for the intentionally introduced population in Selangor, Malaysia. Sri Lanka is a possible source population for Malaysia Selangor consistent with a documented introduction over 100 years ago, with port cities within the introduced range revealing possible presence of migrants from other unsampled locations. We demonstrate the power of the approach of using multiple molecular markers to untangle patterns of invasion, provide insights into population structure and phylogeographic relationships and illustrate how historical processes may have contributed to making this species such a successful invader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Barnes HE (1893) On the birds of Aden. Ibis 6:57–83

    Google Scholar 

  • Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  PubMed  Google Scholar 

  • Berutti A (1997) House crow. In: Harrison JA, Allan DG, Underhill LG et al (eds) The atlas of Southern African birds, 108. Bird Life South Africa, Johannesburg

    Google Scholar 

  • Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hubner S, Turner KG, Kenneth DW, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    Article  PubMed  Google Scholar 

  • Boratyński Z, Alve PC, Berto S, Koskela E, Mappes T, Melo-Ferreira J (2014) Introgression of mitochondrial DNA among Myodes voles: consequences for energetics? BMC Evol Biol 11:355

    Article  Google Scholar 

  • Burton M, Burton R (2002) Crow. The international wildlife encyclopedia, vol 10. Marshal Cavendish, New York

    Google Scholar 

  • Dawson DA, Horsburgh GJ, Kupper C, Stewart IRK, Ball AD, Durrant KL, Hansson B, Bacon I, Bird S, Klein A, Krupa AP, Lee JW, Galvez DM, Simeoni M, Smith G, Spurgin LG, Burke T (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility-as demonstrated for birds. Mol Ecol Resour 10:475–494

    Article  CAS  PubMed  Google Scholar 

  • Dawson DA, Ball AD, Spurgin LG, Galvez DM, Stewart IR, Horsburgh GJ, Potter J, Morales MM, Bicknell AW, Preston SA, Ekblom RA, Slate J, Burke T (2013) High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genom 14:176. doi:10.1186/1471-2164-14-176

    Article  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • dos Anjos L, Debus SJS, Madge SC, Marzluff JM (2009) Family corvidae (crows). In: del Hoyo J, Brugarolus RM, Pascual C, Ruiz-Olalla P, Sargatal J (eds) Handbook birds of the world, vol 14. Lynx Edicions, Barcelona, pp 494–640

    Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ericson GP, Jansen AL, Johansson US, Ekman J (2005) Inter-generic relationships of the crows, jays, magpies and allied groups (Aves: Corvidae) based on nucleotide sequence data. J Avian Biol 36:222–234

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Haas F, Hansson B (2008) Identification of 20 polymorphic microsatellite loci in European crow (Corvus corone) from existing passerine loci. Mol Ecol Resour 8:846–850

    Article  CAS  PubMed  Google Scholar 

  • Haas F, Pointer MA, Saino N, Brodin A, Mundy NI, Hansson B (2009) An analysis of population genetic differentiation and genotype-phenotype association across the hybrid zone of carrion and hooded crows using microsatellites and MC1R. Mol Ecol 18:294–305

    Article  CAS  PubMed  Google Scholar 

  • Haring E, Gamauf A, Kryukow A (2007) Phylogeographic patterns in widespread corvid birds. Mol Phylogenet Evol 45:840–862

    Article  CAS  PubMed  Google Scholar 

  • Haring E, Daubl B, Pinsker W, Kryukov A, Gamauf A (2012) Genetic divergences and intraspecific variation in corvids of the genus Corvus (Aves: Passeriformes: Corvidae)—a first survey based on museum specimens. J Zool Syst Evol Res 50(3):230–246

    Article  Google Scholar 

  • Harisson RG, Bogdanowicz SM (1997) Patterns of variation and linkage disequilibrium in a field cricket hybrid zone. Evolution 51(2):493–505

    Article  Google Scholar 

  • Hawley D, Hanley D, Dhondt A, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus)populations experiencing an emergent disease epidemic. Mol Ecol 15:263–275

    Article  CAS  PubMed  Google Scholar 

  • Jackson H, Strubbe D, Tollington S, Prys-Jones R, Matthysen E, Groombridge JJ (2015) Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade. Mol Ecol 24:4269–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen T, Pernasetti FM, Durrant B (2003) Conditions for rapid sex determination in 47 avian Species by PCR of genomic DNA from blood, shell-membrane, blood vessels and feathers. Zoo Biol 22:561–571

    Article  CAS  Google Scholar 

  • Jensen H, Moe R, Hagen IJ, Holand AM, Kekkonen J, Tufto J, Saether BE (2013) Genetic variation and structure of house sparrow populations: is there an island effect? Mol Ecol 22:1792–1805

    Article  PubMed  Google Scholar 

  • Jønsson KA, Fabre PH, Irestedt M (2012) Brains, tools, innovation and biogeography in crows and ravens. BMC Evol Biol 12:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanuch P, Berggren A, Cassel-Lundhagen A (2014) Genetic diversity of successful colonizer: isolated populations of Metrioptera roeselii regain variation at an unusually rapid rate. Ecol Evol 4:1117–1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866

    Article  PubMed  Google Scholar 

  • Keller SR, Taylor DR (2010) Genomic admixture increases fit- ness during a biological invasion. J Evol Biol 23:1720–1731

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LRG et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kryukov A, Spiridonova L, Nakamura S, Haring E, Suzuki H (2012) Comparative phylogeography of two crow species: jungle crow Corvus macrorhynchos and carrion crow Corvus corone. Zool Sci 29(8):484–492

    Article  PubMed  Google Scholar 

  • Krzeminska U, Wilson R, Rahman S, Song BK, Gan HM, Tan MH, Austin CM (2014) The complete mitochondrial genome of the invasive house crow Corvus splendens (Passeriformes: Corvidae). Mitochondrial DNA. [Epub ahead of print]

  • Krzeminska U, Wilson R, Rahman S, Song BK, Seneviratne S, Gan HM, Austin CM (2015) Mitochondrial genomes of the jungle crow Corvus macrorhynchos (Passeriformes: Corvidae) from shed feathers and a phylogenetic analysis of genus Corvus using mitochondrial protein-coding genes. Mitochondrial DNA 15:1–3

    Article  Google Scholar 

  • Le Corre V, Kremer A (1998) Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping-stone model. J Evol Biol 11:495–512

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Lewontin R (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima MR, Macedo RHF, Martins TLF, Schrey AW, Martin LB, Bensch S (2012) Genetic and morphometric divergence of an invasive bird: the introduced house sparrow (Passer domesticus) in Brazil. PLoS One 7(12):e53332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindblom L (2009) Sample size and haplotype richness in population samples of the lichen-forming ascomycete Xanthoria perietina. Lichenol 41(5):529–535

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Marzluff JM, Angell T (2005) In the company of crows and ravens. Yale University Press, New Haven

    Google Scholar 

  • Morales HE, Pavlova A, Joseph L, Sunnucks P (2015) Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 24:2820–2837

    Article  CAS  PubMed  Google Scholar 

  • Nyari A, Ryall C, Peterson AT (2006) Global invasive potential of the house crow Corvus splendens based on ecological niche modeling. J Avian Biol 37(4):306–311

    Article  Google Scholar 

  • Ohta T, Kimura M (1969) Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics 69:229–238

    Google Scholar 

  • Online document Institute of Shipping Economics and Logistics. World Port Ranking 2010. http://aapa.files.cms-plus.com/statistics/world%20port%20rankings%202010.pdf. Accessed 06 Sept 2015

  • Ottens G, Ryall C (2003) House crows in the Netherlands and Europe. Dutch Bird 23:312–319

    Google Scholar 

  • Pavlova A, Amos JN, Joseph L et al (2013) Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution 67:3412–3428

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    Article  PubMed  Google Scholar 

  • Rolando A (1993) A study on the hybridization between Carrion and Hooded Crow in northwestern Italy. Ornis Scand 24:80–83

    Article  Google Scholar 

  • Rollins LA, Woolnough AP, Wilton AN (2009) Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol Ecol 18:1560–1573

    Article  PubMed  Google Scholar 

  • Rollins LA, Woolnough AP, Sinclar R, Mooney NJ, Sherwin WB (2011) Mitochondrial DNA offers unique insights into invasion history of the common starling. Mol Ecol 20:2307–2317

    Article  PubMed  Google Scholar 

  • Rollins LA, Woolnough AP, Fanson BG, Cummins ML, Crowley TM, Wilton AN, Sinclar R, Butler A, Sherwin WB (2016) Selection on mitochondrial variants occurs between and within individuals in an expanding invasion. Mol Biol Evol. doi:10.1093/molbev/msv343

    PubMed  Google Scholar 

  • Ryall C (2013) House crow monitor Corvus splendens. http://www.housecrow.com/. Accessed 11 June 2015

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven

    Google Scholar 

  • Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164:378–395

    Article  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stager M, Cerasale DJ, Dor R, Winkler DW, Cheviron ZA (2014) Signatures of natural selection in the mitochondrial genomes of (Tachycineta) swallows and their implications for latitudinal patterns of the ‘pace of life’. Gene 546:104–111

    Article  CAS  PubMed  Google Scholar 

  • Sunnucks P, Hansen BD (2013) Guest Box 5: Null alleles and Bonferroni ‘abuse’: treasure your exceptions (and so get it right for Leadbeater’s possum). In: Allendorf FW, Luikart GH, Aitken SN 2013. Conservation and the Genetics of Populations, 2nd ed, p. 93. Wiley, Oxford

  • Teacher AGF, Andre C, Merila J, Wheat C (2012) Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol Biol 12:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansion. Glob Change Biol 17:3478–3485

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vaughan JH (1930) The birds of Zanzibar and Pemba. Ibis 5:577–608

    Google Scholar 

  • Verdugo C, Clark AM, Prakoso D, Kramer LD, Long MT (2012) Multiplexed microsatellite loci in American crow (Corvus brachyrhynchos): a serverely affected natural host of West Nile Virus. Infect Genet Evol 12:1968–1974

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc Biol Sci 278:2–8

    Article  Google Scholar 

  • Waples RS (2014) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106(1):1–19

    Article  PubMed  Google Scholar 

  • Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines MS (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer Associates, Inc., Sunderland, pp 229–257

    Google Scholar 

  • Wells DR (2007) The birds of the Thai-Malay Peninsula: passerines, vol 2. Christopher Helm, London

    Google Scholar 

  • Willey A, Treacher WH, Carey EV, Cochrane CWH, Neubronner AD, Marks O (1903) Acclimatization of Ceylon crow Corvus splendens in the Malay Peninsula. Spolia Zeylandica 1:23–35

    Google Scholar 

  • Wolfe LM, Blair AC, Penna BM (2007) Does intraspecific hybridization contribute to the evolution of invasiveness: an experimental test. Biol Invasions 9:515–521

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Agri-Food and Veterinary Authority Singapore, Subang Jaya Council, University of Colombo, University of Dhaka, Mr Mfundo Tafeni from the Environmental Resource Management Department in Cape Town, Mr Duncan Mitchell from Kenya and the Assistant Veterinary Officer, Meor Amri Md. Noor from the Penang Council for providing some of the samples used in this project. We also thank Centre for Research in Biotechnology for Agriculture at the University of Malaya for providing us access to their laboratory equipment, and the Monash University Malaysia Genomics Facility for generating part of data used in this project. We are also extremely grateful to Dr Colin Ryall, The Persistence and Adaptation Research Team (PART), Dr Alexandra Pavlova and Prof. Paul Sunnucks for their help in parts of this study. Funding for this study was provided by the Monash University Malaysia School of Science and Monash University Malaysia Tropical Medicine and Biology Multidisciplinary Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Krzemińska.

Ethics declarations

Conflict of interest

Funding for this study was provided by the Monash University Malaysia School of Science and Monash University Malaysia Tropical Medicine and Biology Multidisciplinary Platform. Samples in Sri Lanka were collected under the research permit granted by the Department of Wildlife Conservation, Sri Lanka (Permit no. WL/3/2/41/14). The authors report that they have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzemińska, U., Wilson, R., Song, B.K. et al. Genetic diversity of native and introduced populations of the invasive house crow (Corvus splendens) in Asia and Africa. Biol Invasions 18, 1867–1881 (2016). https://doi.org/10.1007/s10530-016-1130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1130-5

Keywords

Navigation