Skip to main content
Log in

Range expansion and increasing impact of the introduced wasp Aphidius matricariae Haliday on sub-Antarctic Marion Island

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year−1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between −18 and 33.8 °C, with a crystallization temperature of −22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham S, Somers MJ, Chown SL (2011) Seasonal, altitudinal and host plant-related variation in the abundance of aphids (Insecta, Hemiptera) on sub-Antarctic Marion Island. Polar Biol 34:513–520

    Article  Google Scholar 

  • Adabi ST, Talebi AA, Fathipour Y, Zamani AA (2010) Life history and demographic parameters of Aphis fabae (Hemiptera: Aphididae) and its parasitoid Aphidius matricariae (Hymenoptera: Aphidiidae) on four sugar beet cultivars. Acta Entomol Serb 15:61–73

    Google Scholar 

  • Allen JA, Clusella-Trullas S, Chown SL (2012) The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenrbionidae) and Cyrtobagous salviniae (Curculionidae). J Insect Physiol 58:669–678

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Boivin G, Hance Th, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92:1–12

    Article  Google Scholar 

  • Brandjes GJ, Block W, Ernsting G (1999) Spatial dynamics of two introduced species of carabid beetles on the sub-Antarctic island of South Georgia. Polar Biol 21:326–334

    Article  Google Scholar 

  • Chevrier M, Frenot P, Vernon Y (1997) Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431

    Google Scholar 

  • Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Crafford JE (1992) Microhabitat temperatures at Marion Island (46o54’S 37o45’E). S Afr J Antarct Res 22:51–58

    Google Scholar 

  • Chown SL, Gremmen NJM, Gaston KJ (1998) Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Am Nat 152:562–575

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Froneman PW (2008) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, Stellenbosch

    Google Scholar 

  • Chown SL, Language K (1994) Recently established Diptera and Lepidoptera on sub-Antarctic Marion Island. Afr Entomol 2:57–76

    Google Scholar 

  • Chown SL, Rodrigues ASL, Gremmen NJM, Gaston KJ (2001) World Heritage status and conservation of southern ocean islands. Conserv Biol 15:550–557

    Article  Google Scholar 

  • Colinet H, Hance Th (2010) Interspecific variation in the response to low temperature storage in different aphid parasitoids. Annal Appl Biol 156:147–156

    Article  Google Scholar 

  • Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602

    Article  Google Scholar 

  • Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc R Soc Tasmania 143:33–44

    Google Scholar 

  • Crafford JE, Scholtz CH, Chown SL (1986) The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. S Afr J Antarct Res 16:41–84

    Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Deere JA, Sinclair BJ, Marshall DJ, Chown SL (2006) Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. J Insect Physiol 52:693–700

    Article  CAS  PubMed  Google Scholar 

  • de Villiers MS, Cooper J, Carmichael N, Glass JP, Liddle GM, McIvor E, Micol T, Roberts A (2005) Conservation management at southern ocean islands: towards the development of best-practice guidelines. Polarforschung 75:113–131

    Google Scholar 

  • Finlay KJ, Luck JE (2011) Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop-vector-virus pathosystem. Agric Ecosyst Environ 144:405–421

    Article  Google Scholar 

  • Frenot Y, Gloaguen JC, Masse L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Goldson SL, Proffitt JR, McNeill MR, Baird DB (1999) Linear patterns of dispersal and build up of the introduced parasitoid Microctonus hyperodae (Hymenoptera: Braconidae) in Canterbury, New Zealand. Bull Entomol Res 89:347–353

    Google Scholar 

  • Grandgirard J, Hoddle MS, Petit JN, Roderick GK, Davies N (2008) Engineering an invasion: classical biological control of the glassy-winged sharpshooter, Homalodisca vitripennis, by the egg parasitoid Gonatocerus ashmeadi in Tahiti and Moorea, French Polynesia. Biol Invas 10:135–148

    Article  Google Scholar 

  • Gremmen NJM (1997) Changes in the vegetation of sub-Antarctic Marion Island resulting from introduced vascular plants. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 417–423

    Google Scholar 

  • Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol Conserv 85:223–231

    Article  Google Scholar 

  • Gremmen NJM, Smith VR (2008) Terrestrial vegetation and dynamics. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 215–244

    Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  CAS  PubMed  Google Scholar 

  • Hänel C, Chown SL (1998) The impact of a small, alien invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus (Diptera, Chironomidae) at Marion Island. Polar Biol 20:99–106

    Article  Google Scholar 

  • Houghton M, McQuillan PB, Bergstrom DM, Frost L, van den Hoff J, Shaw JD (2016) Pathways of alien invertebrate transfer to the Antarctic region. Polar Biol 39:23–33. doi:10.1007/s00300-014-1599-2

    Article  Google Scholar 

  • Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239

    Article  Google Scholar 

  • Hullé M, Pannetier D, Simon J-C, Vernon P, Frenot Y (2003) Aphids of sub-Antarctic Îles Crozet and Kerguelen: species diversity, host range and spatial distribution. Antarct Sci 15:203–209

    Article  Google Scholar 

  • Jones MGW, Ryan PG (2010) Evidence of mouse attacks on albatross chicks on sub-Antarctic Marion Island. Antarct Sci 22:39–42

    Article  Google Scholar 

  • Kellermann V, Loeschcke V, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389

    Article  PubMed  Google Scholar 

  • Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334

    Article  Google Scholar 

  • Klok CJ, Chown SL (1998) Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-Antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). J Insect Physiol 44:615–628

    Article  CAS  PubMed  Google Scholar 

  • Langhof M, Meyhöfer R, Poehling H-M, Gathmann A (2005) Measuring the field dispersal of Aphidius colemani (Hymenoptera: Braconidae). Agric Ecosyst Environ 107:137–143

    Article  Google Scholar 

  • Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invas 13:1195–1208

    Article  Google Scholar 

  • Lee JE, Chown SL (2009) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959

    Article  PubMed  Google Scholar 

  • Lee JE, Janion C, Marais E, VanVuuren BJ, Chown SL (2009) Physiological tolerances account for range limits and abundance structure in an invasive slug. Proc R Soc B 276:1459–1468

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Slabber S, Jansen van Vuuren B, Van Noort S, Chown SL (2007) Colonisation of sub-Antarctic Marion Island by a non-indigenous aphid parasitoid Aphidius matricariae (Hymenoptera, Braconidae). Polar Biol 30:1195–1201

    Article  Google Scholar 

  • le Roux PC (2008) Climate and climate change. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 39–64

    Google Scholar 

  • le Roux PC, McGeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14:2950–2962

    Article  Google Scholar 

  • le Roux PC, Ramaswiela T, Kalwij JM, Shaw JD, Ryan PG, Treasure AM, McClelland GTW, McGeoch MA, Chown SL (2013) Human activities, propagule pressure and alien plants in the sub-Antarctic: tests of generalities and evidence in support of management. Biol Conserv 161:18–27

    Article  Google Scholar 

  • McGeoch MA, Shaw JD, Terauds A, Lee JE, Chown SL (2015) Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environ Change 32:108–125

    Article  Google Scholar 

  • Petit JN, Hoddle MS, Grandgirard J, Roderick GK, Davies N (2008) Short-distance dispersal behavior and establishment of the parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae) in Tahiti: implications for its use as a biological control agent against Homalodisca vitripennis (Hemiptera: Cicadellidae). Biol Control 45:344–352

    Article  Google Scholar 

  • Preuss S, Low M, Cassel-Lundhagen A, Berggren Ä (2014) Evaluating range-expansion models for calculating nonnative species’ expansion rate. Ecol Evol 4:2812–2822

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed HC, Reed DK, Elliott NC (1992) Comparative life table statistics of Diaeretiella rapae and Aphidius matricariae on the Russian wheat aphid. Southwestern Entomol 17:307–312

    Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282

    Article  Google Scholar 

  • Schönrogge K, Begg T, Williams R, Melika G, Randle Z, Stone GN (2012) Range expansion and enemy recruitment by eight alien gall wasp species in Britain. Insect Conserv Divers 5:298–311

    Article  Google Scholar 

  • Shaw JD (2013) Southern ocean islands invaded: conserving biodiversity in the world’s last wilderness. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Springer, Dordrecht, pp 449–470

    Chapter  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: What’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Smith VR (2007) Introduced slugs and indigenous caterpillars as facilitators of carbon and nutrient mineralisation on a sub-Antarctic island. Soil Biol Biochem 39:709–713

    Article  CAS  Google Scholar 

  • Smith VR, Avenant NL, Chown SL (2002) The diet of house mice on a sub-Antarctic island. Polar Biol 25:703–715

    Google Scholar 

  • Terblanche JS, Hoffmann AA, Mitchell KA et al (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725

    Article  PubMed  Google Scholar 

  • Thrall PH, Oakeshott JG, Fitt G et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Treasure AM, Chown SL (2013) Contingent absences account for range limits but not the local abundance structure of an invasive springtail. Ecography 36:146–156

    Article  Google Scholar 

  • Weldon CW, Terblanche JS, Chown SL (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Thermal Biol 36:479–485

    Article  Google Scholar 

  • Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219

    Article  Google Scholar 

  • Worland R, Block W, Rothery P (1992) Survival of sub-zero temperatures by two South Georgian beetles (Coleoptera, Perimylopidae). Polar Biol 11:607–613

    Article  Google Scholar 

  • Worland MR, Janion C, Treasure AM, Chown SL (2010) Pre-freeze mortality in three species of aphids from sub-Antarctic Marion Island. J Thermal Biol 35:255–262

    Article  Google Scholar 

  • Yu DS, van Achterberg K, Horstmann K (2005) World Ichneumonoidea 2004. Taxonomy, Biology, Morphology and Distribution. CD/DVD. Taxapad, Vancouver, Canada. http://www.taxapad.com

  • Zamani AA, Talebi A, Fathipour Y, Baniameri V (2007) Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ Entomol 36:263–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Aleks Terauds, Alan Tshautshau, and Charlene Janion-Scheepers for assistance in the field, and two anonymous referees for helpful comments on an earlier version of the ms. This work was supported by National Research Foundation of South Africa Grant SNA14071475789 and Australian Research Council Grant DP140101240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Chown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.E., Chown, S.L. Range expansion and increasing impact of the introduced wasp Aphidius matricariae Haliday on sub-Antarctic Marion Island. Biol Invasions 18, 1235–1246 (2016). https://doi.org/10.1007/s10530-015-0967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0967-3

Keywords

Navigation