Skip to main content
Log in

Pulsatile Turbulent Flow in Straight and Curved Pipes – Interpretation and Decomposition of Hot-Wire Signals

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Pulsatile turbulent flows in curved pipes at high Womersley and Reynolds numbers are prevalent in various components of internal combustion engines, in particular in the intake of the exhaust manifold. Despite their technological importance, there appears to be a lack of experimental data both with regard to straight and bent pipes. The present paper addresses this gap through phase-locked hot-wire anemometry measurements in a highly pulsatile turbulent flow through straight and bent pipes and compares the results with those obtained under steady flow conditions. The aim is to understand to some extent the effect of pulsations on the turbulent flow itself and for that purpose different decomposition methods are applied to the data in order to reveal the underlying turbulence from the pulsatile signal. Besides classical phase-averaging, also temporal filtering and singular value decomposition have been employed to investigate the decomposed turbulence statistics in terms of their pulsatile and turbulence contributions. Results show that—due to the large scale separation between the turbulence and pulsations—both decomposition techniques provide similar results and highlight, that the statistics from the turbulent part of the pulsatile flow resemble those of the steady one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anwer, M., So, R.M.C.: Swirling turbulent flow through a curved pipe. Part 1: Effect of swirl and bend curvature. Exp. Fluids 14, 85–96 (1993)

    Article  Google Scholar 

  2. Arányi, P., Janiga, G., Zähringer, K., Thévenin, D.: Analysis of different POD methods for PIV-measurements in complex unsteady flows. Int. J. Heat Fluid Flow 43, 204–211 (2013)

    Article  Google Scholar 

  3. Azzola, J., Humprey, J.A.C., Iacovides, H., Launder, B.E.: Developing turbulent flow in a U-bend of circular cross-section: Measurement and computation. J. Fluids Eng. 108, 214–221 (1986)

    Article  Google Scholar 

  4. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  5. Berson, A., Blanc-Benon, P., Comte-Bellot, G.: On the use of hot-wire anemometry in pulsating flows. A comment on ‘A critical review on advanced velocity measurement techniques in pulsating flows’. Meas. Sci. Technol. 21, 128001 (2010)

    Article  Google Scholar 

  6. Boersma, B.J., Nieuwstadt, F.T.M.: Large-Eddy Simulation of turbulent flow in a curved pipe. J. Fluid Eng. 118, 248–254 (1996)

    Article  Google Scholar 

  7. Boiron, O., Deplano, V., Pelissier, R.: Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid Mech. 574, 109–129 (2007)

    Article  MATH  Google Scholar 

  8. Brereton, G.J., Kodal, A.: An adaptive turbulence filter for decomposition of organized turbulent flows. Phys. Fluids 6, 1775–1786 (1994)

    Article  MATH  Google Scholar 

  9. Bruun, H.: Hot-Wire Anemometry: Principles and Signal Analysis. Oxford University Press (1995)

  10. Carpinlioǧlu, M.Ö., Gündoǧdu, M.Y.: A critical review on pulsatile pipe flow studies directing towards future research topics. Flow Meas. Instrum. 12, 163–174 (2001)

    Article  Google Scholar 

  11. Çarpinlioğlu, M.Ö., Özahi, E.: An updated portrait of transition to turbulence in laminar pipe flows with periodic time dependence (a correlation study). Flow Turbul. Combust. 89, 691–711 (2012)

    Article  Google Scholar 

  12. Chandran, K.B., Yearwood, T.L.: Experimental study of physiological pulsatile flow in a curved tube. J. Fluid Mech. 111, 59–85 (1981)

    Article  Google Scholar 

  13. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)

    Google Scholar 

  14. Chen, H., Reuss, D.L., Sick, V.: On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows. Meas. Sci. Technol. 23, 085302 (2012)

    Google Scholar 

  15. Chenxiao, N., Xushe, Z.: Study on vibration and noise for the hydraulic system of hydraulic hoist. In: Proc. 1 st Int. Conf. Mech. Eng. Mater. Sci. Shanghai (2012)

  16. Dean, W.R.: Note on the motion of fluid in a curved pipe. Phil. Mag. 4, 208–223 (1927)

    Article  MATH  Google Scholar 

  17. Dean, W.R.: The stream-line motion of fluid in a curved pipe. Phil. Mag. 5, 671–695 (1928)

    Article  Google Scholar 

  18. Druault, P., Delville, J., Bonnet, J.P.: Proper Orthogonal Decomposition of the mixing layer flow into coherent structures and turbulent Gaussian fluctuations. C. R. Mec. 333, 824–829 (2005)

    Article  MATH  Google Scholar 

  19. Elshafei, E., Safwat Mohamed, M., Mansour, H., Sakr, M.: Numerical study of heat transfer in pulsating turbulent air flow. J. Eng. Technol. Res. 4, 89–97 (2007)

    Google Scholar 

  20. Enayet, M.M., Gibson, M.M., Taylor, A., Yianneskis, M.: Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int. J. Heat Fluid Flow 3, 213–219 (1982)

    Article  Google Scholar 

  21. Erdil, A., Kodal, A., Aydin, K.: Decomposition of turbulent velocity fields in an SI engine. Flow Turbul. Combust. 68, 91–110 (2002)

    Article  MATH  Google Scholar 

  22. Fogleman, M., Lumley, J., Rempfer, D., Haworth, D.: Application of the proper orthogonal decomposition to datasets of internal combustion engine flows. J. Turb. 5, N23 (2004)

    Article  Google Scholar 

  23. Glenn, A.L., Bulusu, K., Shu, F., Plesniak, M.W.: Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model. Int. J. Heat Fluid Flow 35, 76–83 (2012)

    Article  Google Scholar 

  24. Hamakiotes, C.C., Berger, S.A.: Fully developed pulsatile flow in a curved pipe. J. Fluid Mech. 195, 23–55 (1988)

    Article  Google Scholar 

  25. Hamakiotes, C.C., Berger, S.A.: Periodic flows through curved tubes: The effect of the frequency parameter. J. Fluid Mech. 210, 353–370 (1990)

    Article  Google Scholar 

  26. He, S., Jackson, J.D.: An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech-B/Fluids 28, 309–320 (2009)

    Article  MATH  Google Scholar 

  27. Hellström, L.H.O., Zlatinov, M.B., Cao, G., Smits, A.J.: Turbulent pipe flow downstream of a bend. J. Fluid Mech. 735, R7 (2013)

    Article  Google Scholar 

  28. Hessami, M.A., Zulkifli, N.W.: Experimental study of pulsatile flows in a heated horizontal tube for various flow and pulsation conditions. In: Int. Conf. Eng. Technol. Kuala Lumpur (2007)

  29. Hussain, A., Reynolds, W.C.: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241–258 (1970)

    Article  Google Scholar 

  30. Jarrahi, M., Castelain, C., Peerhossaini, H.: Secondary flow patterns and mixing in laminar pulsatile flow through a curved pipe. Exp. Fluids 50, 1539–1558 (2010)

    Article  Google Scholar 

  31. Johansson, A.V., Alfredsson, P.H.: On the structure of turbulent channel flow. J. Fluid Mech. 122, 295–314 (1982)

    Article  Google Scholar 

  32. Jung, D., Gamard, S., George, W.K.: Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173–204 (1999)

    Article  Google Scholar 

  33. Kalpakli, A., Örlü, R.: Turbulent pipe flow downstream a 90 pipe bend with and without superimposed swirl. Int. J. Heat Fluid Flow 41, 103–111 (2013)

    Article  Google Scholar 

  34. Kalpakli, A., Örlü, R., Alfredsson, P.H.: Dean vortices in turbulent flows: rocking or rolling? J. Vis. 15, 37–38 (2012)

    Article  Google Scholar 

  35. Kalpakli, A., Örlü, R., Alfredsson, P.H.: Vortical patterns in turbulent flow downstream a 90 curved pipe at high Womersley numbers. Int. J. Heat Fluid Flow 44, 692–699 (2013)

    Article  Google Scholar 

  36. Kalpakli, A., Örlü, R., Tillmark, N., Alfredsson, P.H.: Experimental investigation on the effect of pulsations on turbulent flow through a 90 degrees pipe bend. In: 3rd Int. Conf. on Jets, Wakes and Separated Flows. Cincinnati (2010)

  37. Kalpakli, A., Örlü, R., Tillmark, N., Alfredsson, P.H.: Experimental investigation on the effect of pulsations on exhaust manifold-related flows aiming at improved engine efficiency. In: 10th Int. Conf. on Turbochargers and Turbocharging (iMechE), pp 377–387. London (2012)

  38. Kapitza, L., Imberdis, O., Bensler, H.P., Willand, J., Thévenin, D.: An experimental analysis of the turbulent structures generated by the intake port of a DISI-engine. Exp. Fluids 48, 265–280 (2010)

    Article  Google Scholar 

  39. Laurantzon, F., Tillmark, N., Örlü, R., Alfredsson, P.H.: A flow facility for the characterization of pulsatile flows. Flow Meas. Instrum. 26, 10–17 (2012)

    Article  Google Scholar 

  40. Laurantzon, F., Örlü, R., Segalini, A., Alfredsson, P.H.: Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis. Meas. Sci. Technol. 21, 123001 (2010)

    Article  Google Scholar 

  41. Laurantzon, F., Örlü, R., Segalini, A., Tillmark, N., Alfredsson, P.H.: Experimental analysis of turbocharger interaction with a pulsatile flow through time-resolved flow measurements upstream and downstream the turbine. In: 10th Int. Conf. on Turbochargers and Turbocharging (iMechE), pp. 405–415. London (2012)

  42. Lewalle, J., Delville, J., Bonnet, J.P.: Decomposition of mixing layer turbulence into coherent structures and background fluctuations. Flow Turbul. Combust. 64, 301–328 (2000)

    Article  MATH  Google Scholar 

  43. Lumley, J.L.: Stochastic Tools in Turbulence. Academic Press, New York (1971)

    Google Scholar 

  44. Meyer, K., Pedersen, J.M., Özcan, O.: A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199–227 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Monty, J.P.: Developments in smooth wall turbulent duct flows. Ph.D. thesis University of Melbourne, Australia (2005)

  46. Nabavi, M., Siddiqui, K.: A critical review on advanced velocity measurement techniques in pulsating flows. Meas. Sci. Technol. 21, 042002 (2010)

    Article  Google Scholar 

  47. Noorani, A., El Khoury, G.K., Schlatter, P.: Evolution of turbulence characteristics from straight to curved pipes. Int. J. Heat Fluid Flow 41, 16–26 (2013)

    Article  Google Scholar 

  48. Ohmi, M., Iguchi, M., Urahata, I.: Transition to turbulence in a pulsatile pipe flow. Part 1: Waveforms and distribution of pulsatile velocities near transition region. Bull. JSME 25, 182–189 (1982)

    Article  Google Scholar 

  49. Ohmi, M., Iguchi, M., Usui, T., Minami, H.: Flow pattern and frictional losses in pulsating pipe flow: Part l, Effect of pulsating frequency on the turbulent flow pattern. Bull. JSME 23, 2013–2020 (1980)

    Article  Google Scholar 

  50. Ölçmen, S., Ashford, M., Schinestsky, P., Drabo, M.: Comparative analysis of velocity decomposition methods for internal combustion engines. Open J. Fluid Dyn. 2, 70–90 (2012)

    Article  Google Scholar 

  51. Ono, A., Kimura, N., Kamide, H., Tobita, A.: Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition. Nucl. Eng. Des. 241, 4409–4419 (2010)

    Article  Google Scholar 

  52. Örlü, R., Alfredsson, P.H: On spatial resolution issues related to time-averaged quantities using hot-wire anemometry. Exp. Fluids 49, 101–110 (2010)

    Article  Google Scholar 

  53. Örlü, R., Malizia, F., Cimarelli, A., Schlatter, P., Talamelli, A.: The influence of temperature fluctuations on hot-wire measurements in wall-bounded turbulence. Exp. Fluids 55, 1781 (2014)

    Article  Google Scholar 

  54. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press (2007)

  55. Ramaprian, B.R., Tu, S.W.: Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow. J. Fluid Mech. 137, 59–81 (1983)

    Article  Google Scholar 

  56. Roudnitzky, S., Druault, P., Guibert, P.: Proper orthogonal decomposition of in-cylinder engine flow into mean component, coherent structures and random Gaussian fluctuations. J. Turb. 7, N70 (2006)

    Article  Google Scholar 

  57. Rütten, F., Meinke, M., Schröder, W.: Large-eddy simulations of 90 pipe bend flows. J. Turb. 2, 003 (2001)

    Article  Google Scholar 

  58. Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids 17, 035107 (2005)

    Article  Google Scholar 

  59. Sakakibara, J., Machida, N.: Measurement of turbulent flow upstream and downstream of a circular pipe bend. Phys. Fluids 24, 041702 (2012)

    Article  Google Scholar 

  60. Scotti, A., Piomelli, U.: Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13, 1367–1384 (2001)

    Article  Google Scholar 

  61. Scotti, A., Piomelli, U.: Turbulence models in pulsating flows. AIAA J. 40, 537–544 (2002)

    Article  Google Scholar 

  62. Semeraro, O., Bellani, G., Lundell, F.: Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids 53, 1203–1220 (2012)

    Article  Google Scholar 

  63. Shemer, L., Wygnanski, I., Kit, E.: Pulsating flow in a pipe. J. Fluid Mech. 153, 313–337 (1983)

    Article  Google Scholar 

  64. Sonnenberger, R., Graichen, K., Erk, P.: Fourier averaging: A phase-averaging method for periodic flow. Exp. Fluids 28, 217–224 (2000)

    Article  Google Scholar 

  65. Sudo, K., Sumida, M., Hibara, H.: Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Exp. Fluids 25, 42–49 (1998)

    Article  Google Scholar 

  66. Sullivan, P., Pollard, A.: Coherent structure identification from the analysis of hot-wire data. Meas. Sci. Technol. 7, 1498 (1996)

    Article  Google Scholar 

  67. Timité, B., Castelain, C., Peerhossaini, H.: Pulsatile viscous flow in a curved pipe: Effects of pulsation on the development of secondary flow. Int. J. Heat Fluid Flow 31, 879–896 (2010)

    Article  Google Scholar 

  68. Tu, S.W., Ramaprian, B.R.: Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions. J. Fluid Mech. 137, 31–58 (1983)

    Article  Google Scholar 

  69. Tunstall, M.J., Harvey, J.K.: On the effect of a sharp bend in a fully developed turbulent pipe-flow. J. Fluid Mech. 34, 595–608 (1968)

    Article  Google Scholar 

  70. Uchida, S.: The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. ZAMP 7, 403–442 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  71. Womersley, J.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramis Örlü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vester, A.K., Örlü, R. & Alfredsson, P.H. Pulsatile Turbulent Flow in Straight and Curved Pipes – Interpretation and Decomposition of Hot-Wire Signals. Flow Turbulence Combust 94, 305–321 (2015). https://doi.org/10.1007/s10494-014-9571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9571-3

Keywords

Navigation