Skip to main content

Advertisement

Log in

Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Varroa destructor is an ectoparasite that causes serious damage to the population of the honeybee. Increasing resistance of the parasite to acaricides is related, among others, to metabolic adaptations of its esterases to facilitate decomposition of the chemicals used. Esterases are a large heterogeneous group of enzymes that metabolize a number of endogenous and exogenous substrates with ester binding. The aim of the present study was to determine the activity of esterases in the body extracts (BE) and excretion/secretion products (E/SP) of the mite. The enzymes contained in the E/SP should originate mainly from the salivary glands and the alimentary system and they may play a particularly important role in the first line of defence of the mite against acaricides. Activity of cholinesterases (ChEs) [acetylcholinesterase (AChE) and butyrylcholinesterase], carboxylesterases (CEs) and phosphatases [alkaline phosphatase (AP) and acid phosphatase (AcP)] was investigated. The activity of all the enzymes except AChE was higher in the E/SP than in the BE. ChEs from the BE and from the E/SP reacted differently on eserine, a ChE inhibitor. Eserine inhibited both enzymes from the BE, increased decomposition of acetylcholine, but did not influence hydrolysis of butyrylcholine by the E/SP. Activity of the CEs from the BE in relation to the esters of carboxylic acids can be presented in the following series: C10 > C12 > C14 > C8 > C2 > C4 = C16, while activity of the CEs from the E/SP was: C4 > C8 > C2 > C14 > C10 > C12 > C16. The inhibitor of CEs, triphenyl phosphate, reduced the activity of esterases C2–C8 and C14–C16; however, it acted in the opposite way to CEs C10 and C12. The activity of both phosphatases was higher in the E/SP than in the BE (AcP about twofold and AP about 2.6-fold); the activities of AP and AcP in the same material were similar. Given the role of esterases in resistance to pesticides, further studies are necessary to obtain complete biochemical characteristics of the enzymes currently present in V. destructor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aldridge WN (1953a) Serum esterases. 1. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate and method for their determination. Biochem J 53:110–117

    CAS  PubMed  Google Scholar 

  • Aldridge WN (1953b) Serum esterases. 2. An enzyme hydrolyzing diethyl p-nitrophenyl phosphate (E 600) and its identity with the A-esterase of mammalian sera. Biochem J 53:117–124

    CAS  PubMed  Google Scholar 

  • Alpuche-Gual L, Gold-Bouchot G (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumier. Ecotoxicol Environ Safe 71:787–797

    Article  Google Scholar 

  • Aurbek A, Thiermann H, Eyer F, Eyer P, Worek F (2009) Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis. Toxicology 259:133–139

    Article  CAS  PubMed  Google Scholar 

  • Badiou A, Belzunces LP (2008) Is acetylcholinesterase a pertinent biomarker to deyect exposure of pyrethroids? A study case with deltamethrin. Chem Biol Interact 175:406–409

    Article  CAS  PubMed  Google Scholar 

  • Ball B (1994) Host-parasite-pathogen interactions. In: Matheson A (ed) New perspectives on Varroa. IBRA, Cardiff, pp 5–11

    Google Scholar 

  • Bowen-Walker PL, Gunn A (2001) The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol Exp Appl 101:207–217

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantizes of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cicero JM, Sammataro D (2010) The salivary glands of adult female Varroa destructor (Acari, Varroidae), an ectoparasite of the honey bee, Apis mellifera (Hymenoptera, Apidae). Intern J Acarol 36:377–386

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Frączek R, Żółtowska K, Lipiński Z (2009) The activity of nineteen hydrolases in extracts from Varroa destructor and hemolymph of Apis mellifera carnica. J Appl Sci 53:42–51

    Google Scholar 

  • Frączek R, Żółtowska K, Lipiński Z, Dmitryjuk M (2012) Proteolytic activity in the extracts and in the excretory/secretory products from Varroa destructor parasitic mite of honeybee. Intern J Acarol 38:101–109

    Article  Google Scholar 

  • Francis RM, Nielsen SL, Kryger P (2013) Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE 8:e57540. doi:10.1371/journal.pone.0057540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerson U, Mozes-Koch R, Cohen E (1991) Enzymes levels used to monitor pesticide resistance in Varroa jacobsoni. J Appl Res 30:17–20

    CAS  Google Scholar 

  • Gliński Z, Jarosz J (1984) Alterations in hemolymph proteins of drone honey bee larvae parisitized by Varroa jacobsoni. Apidologie 15:329–338

    Article  Google Scholar 

  • Gliński Z, Jarosz J (1988) Varroa jacobsoni invasion and the level of cell-free immunity in upright larvae of the worker honey bee, Apis mellifera. Folia Vet 32–39

  • Guilbault GG, Kuan SS, Sadar MH (1970) Purification and properties of cholinesterase from honeybees-Apis mellifera Linnaeus-and boll wevvils—Anthonomus grandis Boheman. J Agric Food Chem 18:692–697

    Article  CAS  Google Scholar 

  • Hillesheim E, Ritter W, Bassand D (1996) First data on resistance mechanism of Varroa jacobsoni (OUD.) against tau-fluvalinate. Exp Appl Acarol 20:283–296

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353–363

    Article  Google Scholar 

  • Liu Z, Tan J, Huang ZY, Dong K (2006) Effect of a fluvalinate-resistance-associated sodium channel mutation from varroa mites on cockroach sodium channel sensitivity to fluvalinate, a pyrethroid insecticide. Insect Biochem Mol Biol 36:885–889

    Article  CAS  PubMed  Google Scholar 

  • Montella IR, Schama R, Valle D (2012) The classification of esterase’s; an important gene family involved in insecticide resistance—a review. Mem Inst Oswaldo Cruz 107:437–449

    Article  CAS  PubMed  Google Scholar 

  • Moss DW (1984) Acid phosphatases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weiheim, pp 96–101

    Google Scholar 

  • Mozes-Koch R, Slabezki Y, Efrat H, Kalev H, Kramer Y, Yakobson BA, Dag A (2000) First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24:35–43

    Article  CAS  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Nunes ET, Mathias MIC, Bechara GH (2006) Rhipicephalus (Boophilus) microplus (Canestrini 1887) (Acari: ixodidae): acid phosphatase and ATPase activities localization in salivary glands of females during feeding period. Exp Parasit 114:109–117

    Article  CAS  PubMed  Google Scholar 

  • Oaskeshott JG, van Papenrecht EA, Boyee TM, Healy MJ, Russell RJ (1993) Evolutionary genetics of Drosophila esterase’s. Genetica 90:239–268

    Article  Google Scholar 

  • Oaskeshott JG, Devonshire AL, Claudianos Ch, Southerland TD, Horne I, Campbell PM, Ollis DL, Russell RJ (2005) Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterase’s. Chem Biol Interact 157–158:269–275

    Article  Google Scholar 

  • Pruett JH, Pound JM (2006) Biochemical diagnosis of organophosphate-insensitivity with neural acetylcholinesterase extracted by sonication from adult tick synganglion. Vet Parasitol 135:355–363

    Article  CAS  PubMed  Google Scholar 

  • Pruett JH, Guerrero FD, Hernandez R (2002) Isolation and identification of the esterase from a Mexican strain of Boophilus microplus (Acari: ixodidae). J Econ Entomol 95:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Rhouati A, Istamboulie G, Corina-Puig M, Marty J-L, Noguer T (2010) Selective spectrophotometric detection of insecticides using cholinesterase’s phosphotriesterase and chemiomertic analysis. Enzyme Microb Tech 46:212–226

    Article  CAS  Google Scholar 

  • Richards EH, Jones B, Bowman A (2011) Salivary secretions from the honey bee mite Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology 138:602–608

    Article  CAS  PubMed  Google Scholar 

  • Roe MR (1998) The role of esterase’s in insecticide resistance. Rev Toxicol 2:501–537

    Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Insect Pathol 103:S96–S119

    Article  Google Scholar 

  • Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548

    Article  CAS  PubMed  Google Scholar 

  • Sammataro D, Untalan P, Guerrero F, Finley J (2005) The resistance of varroa mites (Acari: varroidae) to acaricide and the presence of esterase. Internat J Acarol 31:67–74

    Article  Google Scholar 

  • Silva de Moraes RLM, Bowen ID (2000) Modes of cell death in the hypo pharyngeal gland of the honey bee (Apis mellifera l.). Cell Biol Inter 24:337–343

    Article  Google Scholar 

  • Valdes-Ramirez G, Cortina M, Ramirez –Silva MT, Marty J-L (2008) Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Anal Bioanal Chem 392:699–707

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu Z, Dong K, Elzen PJ, Pettis J, Huang ZY (2002) Association of novel mutations in a sodium channel gene with fluvalinate resistance in the varroa mite, Varroa destructor. J Api Res 40:17–25

    Google Scholar 

  • Wang R, Huang ZY, Dong K (2003) Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem Mol Biol 33:733–739

    Article  CAS  PubMed  Google Scholar 

  • Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miler MJ, Hammock BD (2008) Application of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol 195:117–178

    CAS  PubMed  Google Scholar 

  • Worek F, Reiter G, Eyer P, Szinicz L (2002) Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol 76:523–529

    Article  CAS  PubMed  Google Scholar 

  • Dong K (2003) Voltage-gated sodium channels as insecticide targets. In: Voss G., Ramos G. (Eds.), Chemistry of crop protection: progress and prospects in science and regulation. pp 167–176

  • Yan Y, Peng L, Liu W-X, Wan F-H (2009) Research progress in insect alkaline phosphatases. Acta Entomol Sin 1:95–105

    Google Scholar 

  • Yan Y, Peng L, Liu W-X, Wan F-H, Harris MK (2011) Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisis tabaci biotype B and Trialeurodes vaporariorum. J Insect Sci 11:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Żółtowska K, Lipiński Z, Dmitryjuk M (2005a) The total protein content, protein fractions and proteases activities of drone prepupea of Apis mellifera due to varrosis. Wiad Parazytol 51:39–43

    Google Scholar 

  • Żółtowska K, Lipiński Z, Dmitryjuk M, Myszka A (2005b) Sugar content, trehalase activity and trehalose level in drone prepupae of Apis mellifera carnica parasitized with Varroa. J Apic Sci 49:61–66

    Google Scholar 

Download references

Acknowledgments

This study was supported by Grant Number N N308 169338 from the Ministry of Science and Higher Education, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Dmitryjuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitryjuk, M., Żółtowska, K., Frączek, R. et al. Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee. Exp Appl Acarol 62, 499–510 (2014). https://doi.org/10.1007/s10493-013-9754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9754-y

Keywords

Navigation