Skip to main content
Log in

Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5–7 and 8.5–11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen W, Phan G, Waksman G (2012) Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens. Curr Opin Struct Biol 22:1–7

    Article  Google Scholar 

  • Bhaya D, Bianco NR, Bryant D, Grossman A (2000) Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37:941–951

    Article  CAS  PubMed  Google Scholar 

  • Biskup T, Paulus B, Okafuji A, Hitomi K, Getzoff ED, Weber S, Schleicher E (2013) Variable electron transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs. J Biol Chem 288:9249–9260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro L, Vera M, Munoz JA, Blazquez ML, Gonzalez F, Sand W, Ballester A (2014) Aeromonas hydrophila produces conductive nanowires. Res Microbiol 165:794–802

    Article  CAS  PubMed  Google Scholar 

  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA 108:15248–15252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordes M, Kottgen A, Jasper C, Jacques O, Boudebous H, Giese B (2008) Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via “stepping stones”. Angew Chem Int Ed Engl 47:3461–3463

    Article  CAS  PubMed  Google Scholar 

  • Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M, Forest KT, Tainer JA (2003) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378

    Article  CAS  PubMed  Google Scholar 

  • Devgoswami CR, Kalita MC, Taludkar J, Bora R, Sharma P (2011) Studies on the growth behaviour of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium carbonate and carbon dioxide gas. Afr J Biotechnol 10:13128–13138

    CAS  Google Scholar 

  • El-Naggar MY, Gorby YA, Xia W, Nealson KH (2008) The molecular density of states in bacterial nanowires. Biophys J 95:L10–L12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feliciano GT (2012) Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles. J Phys Chem A 116:8023–8030

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Haner M, Taschner N, Burkhard P, Aebi U, Muller SA (2002) Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323:845–857

    Article  CAS  PubMed  Google Scholar 

  • Hilleringmann M, Giusti F, Baudner BC, Masignani V, Covacci A, Rappuoli R, Barocchi MA, Ferlenghi I (2008) Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A. PLoS Pathog 4:e1000026

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser END (2004) Pulling together with type IV pili. J Mol Microbiol Biotechnol 7:52–62

    Article  PubMed  Google Scholar 

  • Kuehn MJ, Heuser J, Normark S, Hultgren SJ (1992) P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356:252–255

    Article  CAS  PubMed  Google Scholar 

  • Lamb JJ, Hill RE, Eaton-Rye JJ, Hohmann-Marriott MF (2014) Functional role of PilA in iron acquisition in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 9:e105761

    Article  PubMed Central  PubMed  Google Scholar 

  • Leung KM, Wagner G, Guo Q, Gorby YA, Southam G, Laue WM, Yang J (2011) Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter 7:6617–6621

    Article  CAS  Google Scholar 

  • Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett 13:2407–2411

    Article  CAS  PubMed  Google Scholar 

  • Li Y, H Li (2013) Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. J Basic Microb 53:1–6

    Article  CAS  Google Scholar 

  • Lovley DR, Reguera G, McCarthy KD, Tuominem MT (2009) Providing a bacterium such as Geobacteraceae expressing a conductive proteinaceous pilus; culturing in medium containing an electron acceptor such as iron III oxide; coupling to circuit; self-assembling; no need for metallization. U.S. Patent No. 7,498,155. 3 Mar. 2009

  • Lukacs A, Eker AP, Byrdin M, Brettel K, Vos MH (2008) Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. J Am Chem Soc 130:14394–14395

    Article  CAS  PubMed  Google Scholar 

  • Malvankar NS, Tuominen MT, Lovley DR (2011a) Comment on ‘‘On electrical conductivity of microbial nanowires and biofilms’’ by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie & L. M. Tender. Energy Environ Sci 4:4366

    Article  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011b) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  PubMed  Google Scholar 

  • Malvankar NS, Yalcin SE, Tuominen MT, Lovley DR (2014) Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat Nanotechnol 9:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Mu XQ, Egelman EH, Bullitt E (2002) Structure and function of Hib pili from Haemophilus influenzae type b. J Bacteriol 184:4868–4874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakasugi K, Neilan BA (2005) Identification of pilus-like structures and genes in Microcystis aeruginosa PCC7806. Appl Environ Microbiol 71:7621–7625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakasugi K, Svenson CJ, Neilan BA (2006) The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152:3623–3631

    Article  CAS  PubMed  Google Scholar 

  • Pelicic V (2008) Type IV pili: e pluribus unum? Mol Microbiol 68:827–837

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111:12883–12888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:e10821

    Article  PubMed Central  PubMed  Google Scholar 

  • Proft T, Baker EN (2009) Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Life Sci 66:613–635

    Article  CAS  PubMed  Google Scholar 

  • Reardon PN, Mueller KT (2013) Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J Biol Chem 288:29260–29266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimoyama T, Kato S, Ishii S, Watanabe K (2009) Flagellum mediates symbiosis. Science 323:1574

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strycharz-Glaven SM, Tender LM (2012) Reply to the ‘Comment on ‘‘On electrical conductivity of microbial nanowires & biofilms’’’ by N. S. Malvankar, M. T. Tuominen & D. R. Lovley. Energy Environ Sci 5:6250–6255

    Article  CAS  Google Scholar 

  • Strycharz-Glaven SM, Snider RM, Guiseppi-Eliec A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energy Environ Sci 4:4366–4379

    Article  CAS  Google Scholar 

  • Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Synoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range Extracellular electron transport in Geobacter sulfurreducens. MBio 4:e00105–e00113

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Saxena C, Quan D, Sancar A, Zhong D (2005) Femtosecond dynamics of flavin cofactor in DNA photolyase: radical reduction, local solvation, and charge recombination. J Phys Chem B 109:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Wanger G, Gorby Y, El-Naggar MY, Yuzvinsky TD, Schaudinn C, Gorur A, Sedghizadeh PP (2013) Electrically conductive bacterial nanowires in bisphosphonate-related osteonecrosis of the jaw biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol 115:71–78

    Article  PubMed  Google Scholar 

  • Williamson HR, Dow BA, Davidson VL (2014) Mechanisms for control of biological electron transfer reactions. Bioorg Chem 57:213–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank The Energy and Resources Institute, India and Deakin University, Australia for providing financial support and necessary infrastructure to carry out planned research activities. Sandeep Sure is a recipient of a postgraduate scholarship offered by Deakin University, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandira Kochar.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sure, S., Torriero, A.A.J., Gaur, A. et al. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling. Antonie van Leeuwenhoek 108, 1213–1225 (2015). https://doi.org/10.1007/s10482-015-0576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0576-2

Keywords

Navigation