Skip to main content

Advertisement

Log in

The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with Th1-cytokine production

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Mycobacterium vaccae is of major pharmaceutical interest as an immunotherapeutic agent. Although M. vaccae 15483 ATCCT strain displays smooth and rough colonial morphologies on solid culture media, it is not known in which conditions M. vaccae switches from one colonial morphotype to the other or whether there are biological differences, especially immunological, between them. We have found that the change from a smooth to rough stable variant occurs spontaneously at 30 °C. The analysis of the composition of the cell wall in both variants showed that the smooth morphotype presents an extracellular material that has never previously been described and was identified as a long-chain saturated polyester that, interestingly, is not produced by the rough morphotype. Our results also indicate that this compound could be implicated in the spreading ability of smooth colonies. Proliferation, IFN-\(\upgamma\) and IL-12(p40) production by splenocyte cultures was significantly higher in mice immunised with the rough variant compared with those immunised with the smooth one. This latter finding suggests that the different colonial morphology of M. vaccae may affect the immunomodulatory effects induced from M. vaccae preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

GC-MS:

gas chromatography-mass spectrometry

HKR:

heat-killed rough

HKS:

heat-killed smooth

HPLC:

high performance liquid chromatography

IR:

infrared

LEDBP:

bipolar-gradient LED

NMR:

nuclear magnetic resonance

PFGSE:

pulsed field-gradient spin-echo

RC:

red compound

SEM:

scanning electron microscopy

TLC:

thin layer chromatography

TTA:

2,3,5-triphenyl tetrazole

References

  • Abbot N.C., Beck J.S., Feval F., Weiss F., Mobayen M.H., Ghazi-Saidi K., Dowlati Y., Velayati A.A., Stanford J.L. (2002) Immunotherapy with Mycobacterium vaccae and pe ripheral blood flow in long-treated leprosy patients, a randomised, placebo-controlled trial. Eur. J. Vasc. Endovasc. Surg. 24: 202–208

    Article  PubMed  CAS  Google Scholar 

  • Abou-Zeid C., Gares M.P., Inwald J.,Janssen R., Zhang Y., Young D.B., Hetzel C., Lamb J.R., Baldwin S.L., Orme I.M., Yeremeev V., Nikonenko B.V., Apt A.S. (1997) Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae. Infect. Immun. 65: 1856–1862

    PubMed  CAS  Google Scholar 

  • Arkwright P.D., David T.J. (2001) Intradermal administration of a killed Mycobacterium vaccae suspension (SRL 172) is associated with improvement in atopic dermatitis in children with moderate-to-severe disease. J. Allergy Clin. Immunol. 107: 531–534

    Article  PubMed  CAS  Google Scholar 

  • Balagon M.V., Walsh D.S., Tan P.L., Cellona R.V., Abalos R.M., Tan E.V., Fajardo T.T., Watson J.D., Walsh G.P. (2000) Improvement in psoriasis after intradermal administration of heat-killed Mycobacterium vaccae. Int. J. Dermatol. 39: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Balagon M.V., Tan P.L., Prestidge R., Cellona R.V., Abalos R.M., Tan E.V., Walsh G.P., Watson J.D., Walsh D.S. (2001) Improvement in psoriasis after intradermal administration of delipidated, deglycolipidated Mycobacterium vaccae (PVAC): results of an open-label trial. Clin. Exp. Dermatol. 26: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Barrow W.W., Brennan P.J. (1982) Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J. Bacteriol. 150:381–384

    PubMed  CAS  Google Scholar 

  • Belisle J.T., Brennan P.J. (1989) Chemical basis of rough and smooth variation in mycobacteria. J. Bacteriol. 171: 3465–3470

    PubMed  CAS  Google Scholar 

  • Boenickse R., Juhasz E. (1964) Boeschreibung der neuen Species Mycobacterium vaccae n. sp. Zbl. Bakt. Abt. I, Orig A. 192: 133–135

    CAS  Google Scholar 

  • Camporota L., Corkhill A., Long H., Lordan J., Stanciu L., Tuckwell N., Cross A., Stanford J.L., Rook G.A., Holgate S.T., Djukanovic R. (2003) The effects of Mycobacterium vaccae on allergen-induced airway responses in atopic asthma. Eur. Respir. J. 21:287–293

    Article  PubMed  CAS  Google Scholar 

  • Cermak S.C., Isbell T.A. (2003) Synthesis and physical properties of estolide-based functional fluids. Ind. Crops Products. 18: 183–196

    Article  CAS  Google Scholar 

  • Chadwick M.V. (1981) Mycobacteria – (Monographs in Medical laboratory science series). Wright-PSG, London

    Google Scholar 

  • Chambaz E.M., Horning E.C. (1969) Conversion of steroids to trimethylsilyl derivatives for gas phase analytical studies: reactions of silylating reagents. Anal. Biochem. 30:7–24

    Article  PubMed  CAS  Google Scholar 

  • da Silva T.R., de Freitas J.R., Silva Q.C., Figueira C.P., Roxo E., Leao S.C., de Freitas L.A., Veras P.S. (2002) Virulent Mycobacterium fortuitum restricts NO production by a gamma interferon-activated J774 cell line and phagosome-lysosome fusion. Infect. Immun. 70: 5628–5634

    Article  PubMed  CAS  Google Scholar 

  • Daffé M., Draper P. (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131–203

    Article  PubMed  Google Scholar 

  • Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M.A., Daffé M. (2002) The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology 148: 3089–3100

    PubMed  CAS  Google Scholar 

  • Friebolin H. (1991) Basic One- and Two-dimensional NMR Spectroscopy. VCH, Weinheim

    Google Scholar 

  • Hadley E.A., Smillie F.I., Turner M.A., Custovic A., Wookcock A., Arkwright P.D. (2005) Effect of Mycobacterium vaccae on cytokine responses in children with atopic dermatitis. Clin. Exp. Immunol. 140: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Hölscher C. (2004) The power of combinatorial immunology: IL-12 and IL-12 related dimeric cytokines in infectious diseases. Med. Microbiol. Immunol. 193: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Hrouda D., Baban B., Dunsmuir W.D., Kirby R.S., Dalgleish A.G. (1998) Immunotherapy of advanced prostate cancer: a phase I/II trial using Mycobacterium vaccae (SRL172). Br. J. Urol. 82: 568–573

    PubMed  CAS  Google Scholar 

  • Janssen R., Kruisselbrink A., Hoogteijling L., Lamb J.R., Young D.B., Thole J.E. (2001) Analysis of recombinant mycobacteria as T helper type 1 vaccines in an allergy challenge model. Immunology 102: 441–449

    Article  PubMed  CAS  Google Scholar 

  • Knothe G., Nelsen T.C. (1998) Evaluation of the 13C NMR signals of saturated carbons in some long-chain compounds. J. Chem. Soc. Perkin Trans. 2. 9:2019–2026

    Google Scholar 

  • Luquin M., Ausina V., Lopez-Calahorra F., Belda F., Garcia-Barceló M., Celma C., Prats G. (1991) Evaluation of practical chromatographic procedures for identification of clinical isolates of mycobacteria. J. Clin. Microbiol. 29:120–130

    PubMed  CAS  Google Scholar 

  • Martinez A., Torello S., Kolter R. (1999) Sliding motility in mycobacteria. J. Bacteriol. 181:7331–7338

    PubMed  CAS  Google Scholar 

  • Mayo R.E., Stanford J.L. (2000) Double-blind placebo-controlled trial of Mycobacterium vaccae immunotherapy for tuberculosis in KwaZulu, South Africa, 1991–1997. Trans. R. Soc. Trop. Med. Hyg. 94:563–568

    Article  PubMed  CAS  Google Scholar 

  • Mendes R., O’Brien M.E.R., Mitra A., Norton A., Gregory R.K., Padhani A.R., Bromelow K.V., Winkley A.R., Ashley S., Smith I.E., Souberbielle B.E. (2002) Clinical and immunological assessment of Mycobacterium vaccae (SRL172) with chemotherapy in patients with malignant mesothelioma. Br. J. Cancer 86: 336–341

    Article  PubMed  CAS  Google Scholar 

  • Moehring J.M., Solotorovsky M.R. (1965) Relationship of colonial morphology to virulence for chickens of Mycobacterium avium and the nonphotochromogens. Am. Rev. Respir. Dis. 92: 704–713

    PubMed  CAS  Google Scholar 

  • Muñoz M., Raynaud C., Lanéelle M.A., Julián E., Lopez Marín L.M., Silve G., Ausina V., Daffé M., Luquin M. (1998) Seroreactive species-specific lipooligosaccharides of Mycobacterium mucogenicum sp. nov. (formerly Mycobacterium chelonae-like organisms): identification and chemical characterization. Microbiology 144: 137–148

    Article  PubMed  Google Scholar 

  • O’Brien M.E., Saini A., Smith I.E., Webb A., Gregory K., Mendes R., Ryan C., Priest K., Bromelow K.V., Palmer R.D., Tuckwell N., Kennard D.A., Souberbielle B.E. (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br. J. Cancer 83: 853–857

    Article  PubMed  CAS  Google Scholar 

  • O’Brien M.E., Anderson H., Kaukel E., O’Byrne K., Pawlicki M., Von Pawel J., Reck M., SR-ON-12 Study Group. (2004) SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results. Ann. Oncol. 15: 906–914

    Article  PubMed  CAS  Google Scholar 

  • Peláez M., Orellana C., Marques A., Busquets M., Guerrero A., Manresa A. (2003) Natural estolides produced by Pseudomonas sp 42a2 grown on oleic acid: production and characterization. J. Am. Oil Chem. Soc. 80:859–866

    Article  Google Scholar 

  • Pym A.S., Brodin P., Brosch R., Huerre M., Cole S.T. (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46: 709–717

    Article  PubMed  CAS  Google Scholar 

  • Recht J., Martinez A., Torello S., Kolter R. (2000) Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182: 4348–4351

    Article  PubMed  CAS  Google Scholar 

  • Reddy V.M., Luna-Herrera J., Gangadharam P.R.J. (1996) Pathobiological significance of colony morphology in Mycobacterium avium complex. Microb. Pathog. 21: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Roach D.R., Martin E., Bean A.G., Rennick D.M., Biscoe H., Britton W.J. (2001) Endogenous inhibition of antimycobacterial immunity by IL-10 varies between mycobacterial species. Scand. J. Immunol. 54: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Rotzsche H. (1991) Gas chromatographic analysis of fatty acid salts. J. Chromat. A. 552: 281–288

    Article  CAS  Google Scholar 

  • Sacchi R., Addeo F., Paolillo L. (1997) 1H and 13C NMR of virgin olive oil. An overview. Magn. Reson. Chem. 35:S133-S145

    Article  CAS  Google Scholar 

  • Schaefer W.B., Davis C.L., Cohn M.L. (1970) Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am. Rev. Respir. Dis. 102: 499–506

    PubMed  CAS  Google Scholar 

  • Shirtcliffe P.M., Eastophe S.E., Cheng S., Weatherall M., Tan P.L., Le gros G., Beasley R. (2001) The Effect of Delipidated Deglycolipidated (DDMV) and Heat-killed Mycobacterium vaccae in Asthma. Am. J. Respir. Crit. Care Med. 163:1410–1414

    PubMed  CAS  Google Scholar 

  • Shirtcliffe P.M., Goldkorn A., Weatherall M., Tan P.L., Beasley R. (2003) Pilot study of the safety and effect of intranasal delipidated acid-treated Mycobacterium vaccae in adult asthma. Respirology 8:497–503

    Article  PubMed  Google Scholar 

  • Skinner M.A., Prestidge R., Yuan S., Strabala T.J., Tan P.L. (2001) The ability of heat-killed Mycobacterium vaccae to stimulate a cytotoxic T-cell response to an unrelated protein is associated with a 65 kDa heat-shock protein. Immunology 2: 225–233

    Article  Google Scholar 

  • Skinner M.A., Yuan S., Prestidge R., Chuk D., Watson J.D., Tan P.L.J. (1997) Immunization with heat-killed Mycobacterium vaccae stimulates CD81 cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect. Immun. 65:4525–4530

    PubMed  CAS  Google Scholar 

  • Stanford J.L., Paul R.C. (1973) A preliminary report on some studies of environmental mycobacteria. Ann. Soc. Belg. Med. Trop. 53: 389–393

    PubMed  CAS  Google Scholar 

  • Stanford J., Stanford C., Grange J. (2004) Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis. Front. Biosci. 9: 1701–1719

    Article  PubMed  CAS  Google Scholar 

  • Thornton A.M., Shevach E.M. (1998) CD4+CD25+ immunoregulatory T cells supress polyclonal T cell activation in vitro by inhibiting interleukin-2 production. J. Exp. Med. 188: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Van Boxtel R.M., Lambrecht R.S., Collins M.T. (1990) Effects of colonial morphology and tween 80 on antimicrobial susceptibility of Mycobacterium paratuberculosis. Antimicrob. Agents Chemother. 34: 2300–2303

    PubMed  Google Scholar 

  • Vestal A.L., Kubica G.P. (1966) Differential colonial characteristics of mycobacteria on Middlebrook and Cohn 7H10 agar–base medium. Am. Rev. Respir. Dis. 94: 247–252

    PubMed  CAS  Google Scholar 

  • Wang C.C., Rook G.A.W. (1998) Inhibition of an established allergic response to ovalbumin in BALB/c mice by killed Mycobacterium vaccae. Immunology 93: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Wayne L.G., Kubica G.P. (1986) The mycobacteria. In: Holt J.G., Sneath P.H., Mair N.S., Sharpe M.E. (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, Baltimore, MD, pp 1435–1457

    Google Scholar 

  • Zuany-Amorim C., Manlius C., Trifilieff C., Brunet L.R., Rook G., Bowen G., Pay G., and Walker C. (2002) Long-term protective and antigen-specific effect of heat-killed Mycobacterium vaccae in a murine model of allergic pulmonary inflammation. J. Immunol. 169:1492–1499

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Educación y Cultura (PM98-0180), Ministerio de Ciencia y Tecnología (SAF2002-00514), the Generalitat de Catalunya (2002SGR-00099) and the Fundación Ma Francisca de Roviralta. Esther Julián was recipient of a ‘Beca de Apoyo a la Investigación’ by the Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica.

The authors wish to thank Mercè Martí of the Servei de Microscopia (UAB) for their help in microscopic analysis, and the staff of the Servei d’Immunologia (Hospital Universitari de Bellvitge).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina Luquin or Esther Julián.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Güell, E., Agustí, G., Corominas, M. et al. The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with Th1-cytokine production. Antonie Van Leeuwenhoek 90, 93–108 (2006). https://doi.org/10.1007/s10482-006-9062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9062-1

Keywords

Navigation