Skip to main content
Log in

Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Whole-genome microarrays of Desulfovibrio vulgaris were used to determine relative transcript levels in cells grown to exponential or stationary phase on a medium containing either lactate or formate as electron donor. The results showed that 158 and 477 genes were differentially expressed when comparing exponential to stationary phase in lactate- or formate-based media, respectively; and 505 and 355 genes were responsive to the electron donor used at exponential or stationary phase, respectively. Functional analyses suggested that the differentially regulated genes were involved in almost every aspect of cellular metabolism, with genes involved in protein synthesis, carbon, and energy metabolism being the most regulated. The results suggested that HynBA-1 might function as a primary periplasmic hydrogenase responsible for oxidation of H2 linked to the proton gradient in lactate-based medium, while several periplasmic hydrogenases including HynBA-1 and Hyd might carry out this role in formate-based medium. The results also indicated that the alcohol dehydrogenase and heterodisulfide reductase catalyzed pathway for proton gradient formation might be actively functioning for ATP synthesis in D. vulgaris. In addition, hierarchical clustering analysis using expression data across different electron donors and growth phases allowed the identification of the common electron donor independent changes in gene expression specifically associated with the exponential to stationary phase transition, and those specifically associated with the different electron donors independent of growth phase. The study provides the first global description and functional interpretation of transcriptomic response to growth phase and electron donor in D. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert T.J., Norton J., Ott M., Richmond T., Nuwaysir K., Nuwaysir E.F., Stengele K.P., Green R.D. (2003) Light-directed 5′−>3′ synthesis of complex oligonucleotide microarrays. Nucleic Acids Res. 31:e35

    Article  PubMed  CAS  Google Scholar 

  • Atlung T., Nielsen A., Hansen F.G. (1989) Isolation, characterization and nucleotide sequence of appY, a regulatory gene for growth-phasedependent gene expression in Escherichia coli. J. Bacteriol. 171:1683–1691

    PubMed  CAS  Google Scholar 

  • Fareleira P., Legall J., Xavier A.V., Santos H. (1997) Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J. Bacteriol. 179:3972–3980

    PubMed  CAS  Google Scholar 

  • Flachmann R., Kunz N., Seifert J., Gutlich M., Wientjes F.J., Laufer A., Gassen H.G. (1988) Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Eur. J. Biochem. 175:221–228

    Article  PubMed  CAS  Google Scholar 

  • Gallegos M.T., Schleif R., Bairoch A., Hofmann K., Ramos J.L. (1997) Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61:393–410

    PubMed  CAS  Google Scholar 

  • Hahnenberger K.M., Shapiro L. (1987) Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus. J. Mol. Biol. 194:91–103

    Article  PubMed  CAS  Google Scholar 

  • Hansmann S., Martin W. (2000) Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int. J. Syst. Evol. Microbiol. 50:1655–1663

    PubMed  CAS  Google Scholar 

  • Haveman S.A., Brunelle V., Voordouw J.K., Voordouw G., Heidelberg J.F., Rabus R. (2003) Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J. Bacteriol. 185:4345–4353

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R., Koch J., Linder D., Thauer R.K. (1994) The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thoredoxin reductases. Eur. J. Biochem. 225:253–261

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg J.F., Seshadri R., Haveman S.A., Hemme C.L., Paulsen I.T., Kolonay J.F., Eisen J.A., Ward N., Methe B., Brinkac L.M., Daugherty S.C., Deboy R.T., Dodson R.J., Durkin A.S., Madupu R., Nelson W.C., Sullivan S.A., Fouts D., Haft D.H., Selengut J., Peterson J.D., Davidsen T.M., Zafar N., Zhou L., Radune D., Dimitrov G., Hance M., Tran K., Khouri H., Gill J., Utterback T.R., Feldblyum T.V., Wall J.D., Voordouw G., Fraser C.M. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22:554–559

    Article  PubMed  CAS  Google Scholar 

  • Hoog J.O., von Bahr-Lindstrom H., Jornvall H., Holmgren A., (1986) Cloning and expression of the glutaredoxin (grx) gene of Escherichia coli. Gene 43:13–21

    Article  PubMed  CAS  Google Scholar 

  • Hyland S.A., Eveland S.S., Anderson M.S. (1997) Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol. 179:2029–2037

    PubMed  CAS  Google Scholar 

  • Keener J., Nomura M. (1996) Regulation of ribosome synthesis. In: Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbarger H.E. (eds) Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp 1417–1431

    Google Scholar 

  • Keon R.G., Fu R., Voordouw G. (1997) Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch. Microbiol. 167:376–383

    Article  PubMed  CAS  Google Scholar 

  • Lissolo T., Choi E.S., LeGall J., Peck H.D. Jr. (1986) The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). Biochem. Biophys. Res. Commun. 139:701–708

    Article  PubMed  CAS  Google Scholar 

  • Lumppio H.L., Shenvi N.V., Garg R.P., Summers A.O., Kurtz D.M. Jr. (1997) A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). J. Bacteriol. 179:4607–4615

    PubMed  CAS  Google Scholar 

  • Lumppio H.L., Shenvi N.V., Summers A.O., Voordouw G., Kurtz D.M. Jr. (2001) Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183:101–108

    Article  PubMed  CAS  Google Scholar 

  • Maklashina E., Berthold D.A., Cecchini G. (1998) Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 180:5989–5996

    PubMed  CAS  Google Scholar 

  • Martin J.F., Barreiro C., Gonzalez-Lavado E., Barriuso M. (2003) Ribosomal RNA and ribosomal proteins in corynebacteria. J. Biotechnol. 104:41–53

    Article  PubMed  CAS  Google Scholar 

  • Melin L., Rutberg L., von Gabain A. (1989) Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171:2110–2115

    PubMed  CAS  Google Scholar 

  • Meuer J., Bartoschek S., Koch J., Kunkel A., Hedderich R. (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur. J. Biochem. 265:325–335

    Article  PubMed  CAS  Google Scholar 

  • Meuer J., Kuettner H.C., Zhang J.K., Hedderich R., Metcalf W.W. (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. (USA) 99:5632–5637

    Article  CAS  Google Scholar 

  • Moran A.J., Doran J.L., Wu J., Treit J.D., Ekpo P., Kerr V.J., Roberts A.D., Orme I.M., Galant S., Ress S.R., Nano E.E. (1999) Identification of novel immunogenic Mycobacterium tuberculosis peptides that stimulate mononuclear cells from immune donors. FEMS Microbiol. Lett. 177:123–130

    Article  PubMed  CAS  Google Scholar 

  • Mulliez E., Ollagnier S., Fontecave M., Eliasson R., Reichard P. (1995) Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli. Proc. Natl. Acad. Sci. (USA) 92:8759–8762

    Article  CAS  Google Scholar 

  • Nuwaysir E.F., Huang W., Albert T.J., Singh J., Nuwaysir K., Pitas A., Richmond T., Gorski T., Berg J.P., Ballin J., McCormick M., Norton J., Pollock T., Sumwalt T., Butcher L., Porter D., Molla M., Hall C., Blattner F., Sussman M.R., Wallace R.L., Cerrina F., Green R.D. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 12:1749–1755

    Article  PubMed  CAS  Google Scholar 

  • Odom J.M., Peck H.D. Jr. (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria Desulfovibrio sp. FEMS Microbiol. Lett. 12:47–50

    Article  CAS  Google Scholar 

  • Peck H.D. Jr. (1966) Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 22:112–118

    Article  PubMed  CAS  Google Scholar 

  • Peck H.D., Jr. (1994) Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom J.M., Singleton R. Jr. (eds) The Sulfate-reducing Bacteria: Contemporary Perspectives. Springer Verlag, New York, pp 41–75

    Google Scholar 

  • Pieulle L., Magro V., Hatchikian E.C. (1997) Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J. Bacteriol. 179:5684–5692

    PubMed  CAS  Google Scholar 

  • Rabus R., Hansen T. and Widdel F. 2001. Dissimilatory sulfate-and sulfur-reducing prokaryotes. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. and Stackebrandt E. (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Heidelberg, Springer Science Online (http://www.prokaryotes.com)

  • Shuto H., Fukui T., Saito T., Shirakura Y., Tomita K. (1981) An NAD-linked acetoacetyl-CoA reductase from Zoogloea ramigera I-16-M. Eur. J. Biochem. 118:53–59

    Article  PubMed  CAS  Google Scholar 

  • Stringfellow J.M., Turpin B., Cooper R.A. (1995) Sequence of the Escherichia coli C homoprotocatechuic acid degradative operon completed with that of the 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase-encoding gene (hpcH). Gene 166:73–76

    Article  PubMed  CAS  Google Scholar 

  • Van Schaik W., Zwietering M.H., De Vos W.M., Abee T. (2004) Identification of sigma B-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis. J. Bacteriol. 186:4100–4109

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G. (1995) The Genus Desulfovibrio: The Centennial. Appl. Environ. Microbiol. 61:813–2819

    PubMed  Google Scholar 

  • Voordouw G. (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 184:5903–5911

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G., Brenner S. (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 148:515–520

    Article  PubMed  CAS  Google Scholar 

  • Ye R.W., Wang T., Bedzyk L., Croker K.M. (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Methods 47:257–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was conducted under the Laboratory Directed Research and Development LDRD Program at the Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC056-76RLO1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang.

Electronic supplementary material

10482_2005_9024_MOESM1_ESM.pdf

Supplementary material is available for this article at http://www.dx.doi.org/10.1007/s10482-005-9024-z and is accessible for authorized users.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Culley, D.E., Scholten, J.C.M. et al. Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie Van Leeuwenhoek 89, 221–237 (2006). https://doi.org/10.1007/s10482-005-9024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-005-9024-z

Keywords

Navigation