Skip to main content
Log in

Construction and implementation of asymptotic expansions for Jacobi–type orthogonal polynomials

Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We are interested in the asymptotic behavior of orthogonal polynomials of the generalized Jacobi type as their degree n goes to \(\infty \). These are defined on the interval [−1, 1] with weight function

$$w(x)=(1-x)^{\alpha}(1+x)^{\beta}h(x), \quad \alpha,\beta>-1 $$

and h(x) a real, analytic and strictly positive function on [−1, 1]. This information is available in the work of Kuijlaars et al. (Adv. Math. 188, 337–398 2004), where the authors use the Riemann–Hilbert formulation and the Deift–Zhou non-linear steepest descent method. We show that computing higher-order terms can be simplified, leading to their efficient construction. The resulting asymptotic expansions in every region of the complex plane are implemented both symbolically and numerically, and the code is made publicly available. The main advantage of these expansions is that they lead to increasing accuracy for increasing degree of the polynomials, at a computational cost that is actually independent of the degree. In contrast, the typical use of the recurrence relation for orthogonal polynomials in computations leads to a cost that is at least linear in the degree. Furthermore, the expansions may be used to compute Gaussian quadrature rules in \(\mathcal {O}(n)\) operations, rather than \(\mathcal {O}(n^{2})\) based on the recurrence relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basor, E., Chen, Y., Ehrhardt, T.: Painlevé V and time dependent Jacobi polynomials. J. Phys. A: Math. Theor. 43, 015204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogaert, I.: Iteration-Free Computation of Gauss–Legendre Quadrature nodes and weights. SIAM J. Sci. Comput. 36(3), A1008—A1026 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogaert, I., Michiels, B., Fostier, J.: \(\mathcal {O}(1)\) computation of Legendre polynomials and Gauss-Legendre nodes and weights for parallel computing. SIAM J. Sci. Comput. 34(3), C83—C101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bornemann, F.: Accuracy and stability of computing high-order derivatives of analytic functions by cauchy integrals. Found. Comput. Math. 11, 1–63 (2011). doi:10.1007/s10208-010-9075-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Deift, P.: Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach. American Mathematical Society (2000)

  6. Deift, P., Zhou, X.: A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Bull. Amer. Math. Soc. 26(1), 119–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.9 of 2014-08-29. Online companion to [24]

  8. Fokas, A., Its, A., Kitaev, A.: The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147, 395–430 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Foulquié Moreno, A., Martínez-Finkelshtein, A., Sousa, V.: On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials. J. Approx. Theory 162, 807–831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foulquié Moreno, A., Martínez-Finkelshtein, A., Sousa, V.: Asymptotics of orthogonal polynomials for a weight with a jump on [−1, 1]. Constr. Approx. 33, 219–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gautschi, W.: Orthogonal Polynomials. Oxford Science Publications (reprint) (2010). Companion piece with Matlab code at https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html

  12. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20(1), 3–25 (2006). doi:10.1016/j.acha.2004.12.007

    Article  MathSciNet  MATH  Google Scholar 

  13. Glaser, A., Liu, X., Rokhlin, V.: A fast algorithm for the calculation of the roots of special functions. SIAM J. Sci. Comput. 29(4), 1420–1438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75(1), 40–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hale, N., Townsend, A.: Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights. SISC 35, A652—A672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hale, N., Townsend, A.: A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic formula. SISC 36, A148—A167 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Huybrechs, D.: On the Fourier extension of non-periodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010). doi:10.1137/090752456

    Article  MathSciNet  MATH  Google Scholar 

  18. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  19. Koornwinder, T.H.: On Zeilberger’s algorithm and its q-analogue. J. Comput. Appl. Math. 48, 91–111 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuijlaars, A.B.J., Martínez-Finkelshtein, A.: Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math. 94, 195–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuijlaars, A.B.J., Martínez-Finkelshtein, A., Orive, R.: Orthogonality of Jacobi polynomials with general parameters. Electron. Trans. Numer. Anal. 19, 1–17 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Kuijlaars, A.B.J., McLaughlin, K.T.R., Van Assche, W., Vanlessen, M.: The Riemann-Hilbert approach to strong asymptotics of orthogonal polynomials on [−1, 1]. Adv. Math. 188, 337–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations from the modified Jacobi unitary ensemble. Int. Math. Res. Not. 30, 1575–1600 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Print companion to [7]

  25. Olver, S.: A general framework for solving Riemann–Hilbert problems numerically. Numer. Math. 122, 305–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Olver, S., Townsend, A.: A Fast and Well–Conditioned Spectral Method. SIAM Rev. 55(3), 462–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olver, S., Trogdon, T.: Nonlinear steepest descent and the numerical solution of Riemann–Hilbert problems. Comm. Pure Appl. Math. 67(8), 1353–1389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olver, S., Trogdon, T.: Numerical solution of Riemann–Hilbert problems: random matrix theory and orthogonal polynomials. Constr. Approx. 39(1), 101–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olver, S., Trogdon, T.: A Riemann–Hilbert approach to Jacobi operators and Gaussian quadrature. Tech. rep. arXiv:1311.5838 (2013)

  30. Opsomer, P.: Snelle opstelling van kwadratuurregels met een groot aantal punten. Master’s thesis, KU Leuven, Belgium (2013)

  31. Szegő, G.: Orthogonal Polynomials: American Mathematical Society Colloquium Publications, 3rd edn., vol. XXIII. American Mathematical Society, Providence (1967)

    Google Scholar 

  32. Townsend, A., Trogdon, T., Olver, S.: Fast computation of Gauss quadrature nodes and weights on the whole real line. IMA J. Numer. Anal. (2015). doi:10.1093/imanum/drv002

    MathSciNet  MATH  Google Scholar 

  33. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trogdon, T.: Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear Special Functions. Ph.D. thesis, University of Washington (2013)

  35. Wang, H., Huybrechs, D.: Fast and highly accurate computation of Chebyshev expansion coefficients of analytic functions. Tech. rep. arXiv:1404.2463 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Opsomer.

Additional information

Communicated by: A. Iserles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deaño, A., Huybrechs, D. & Opsomer, P. Construction and implementation of asymptotic expansions for Jacobi–type orthogonal polynomials. Adv Comput Math 42, 791–822 (2016). https://doi.org/10.1007/s10444-015-9442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9442-z

Keywords

Mathematics Subject Classification (2010)

Navigation