Skip to main content
Log in

Cellular and Matrix Contributions to Tissue Construct Stiffness Increase with Cellular Concentration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 06 December 2006

Abstract

The mechanics of bio-artificial tissue constructs result from active and passive contributions of cells and extracellular matrix (ECM). We delineated these for a fibroblast-populated matrix (FPM) consisting of chick embryo fibroblast cells in a type I collagen ECM through mechanical testing, mechanical modeling, and selective biochemical elimination of tissue components. From a series of relaxation tests, we found that contributions to overall tissue mechanics from both cells and ECM increase exponentially with the cell concentration. The force responses in these relaxation tests exhibited a logarithmic decay over the 3600 second test duration. The amplitudes of these responses were nearly linear with the amplitude of the applied stretch. The active component of cellular forces rose dramatically for FPMs containing higher cell concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.

Similar content being viewed by others

REFERENCES

  1. Bell, E., B. Ivarsson, and C. Merrill. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76(3):1274–1278, 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Bellows, C. G., A. H. Melcher, and J. E. Aubin. Cells of different types compress and remodel collagen to markedly different degrees. J. Cell Sci. 50:299–314, 1981.

    PubMed  CAS  Google Scholar 

  3. Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25(17):3699–3706, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Desmouliere, A., C. Chaponnier, and G. Gabbiani. Tissue repair, contraction, and the myofibroblast. Wound Repair. Regen. 13(1):7–12, 2005

    Article  PubMed  Google Scholar 

  5. Eshelby, J. D. The determination of the elastic field outside an ellipsoidal inclusion and related problems. Proc. Roy. Soc. A 241, 1957.

  6. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993, 277–280.

    Google Scholar 

  7. Gabbiani, G. I. The myofibroblast in wound healing and fibrocontractive disease. J. Pathol. 200(4):500–503, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Hill, R. The Mathematical Theory of Plasticity. London, UK: Oxford University Press, 1950.

    Google Scholar 

  9. Knapp, D. M., T. T. Tower, R. T. Tranquillo, and V. H. Barocas. Estimation of cell traction and migration in an isometric cell traction assay. AIChE J. 45(12):2628–2640, 1999.

    Article  CAS  Google Scholar 

  10. Kolodney, M. S., and R. B. Wysolmerski. Isometric contraction by fibroblasts and endothelial cells in tissue culture: A quantitative study. J. Cell Biol. 117:73–82, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Marquez, J. P., G. M. Genin, G. I. Zahalak, and E. L. Elson. Thin bio-artificial tissues in plane stress: The relationship between cell and tissue strain, and an improved constitutive model. Biophys. J. 88:765–777, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Marquez, J. P., G. M. Genin, G. I. Zahalak, and E. L. Elson. The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88:778–789, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Pryse, K. M., A. Nekouzadeh, G. M. Genin, E. L. Elson, G. I. Zahalak. Incremental mechanics of collagen gels: New experiments and a new viscoelastic model. Ann. Biomed. Eng. 31(10):1287–1296, 2003.

    Article  PubMed  Google Scholar 

  14. Pryse, K. M., and E. L. Elson. Mechanical effects of deoxycholate, triton, cytochalasin, and latrunculin A, on reconstituted collagen and fibroblast cells. Manuscript in preparation, 2005.

  15. Roberts, A. P., and E. J. Garboczi. Elastic properties of model porous ceramics. J. Am. Cer. Soc. 83(12):3041–3048, 2000.

    Article  CAS  Google Scholar 

  16. Shreiber, D. I., V. H. Barocas, and R. T. Tranquillo. Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys. J. 84(6):4102–4114, 2003.

    PubMed  CAS  Google Scholar 

  17. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3(5):349–363, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Thomopoulos, S., G. M. Fomovsky, and J. W. Holmes. The development of structural and mechanical anisotropy in fibroblast populated collagen gels. ASME J. Biomech. Eng. 127:742–750, 2005.

    Article  Google Scholar 

  19. Tranquillo, R. T., and J. D. Murray. Continuum model of fibroblast-driven wound contraction: Inflammation-mediation. J. Theor. Biol. 158:135–172, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79:2353–2368, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, J. H. C., P. Goldschmidt-Clermont, and F. C. Yin. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28:1165–1171, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Wille, J. J., C. M. Ambrosi, and F. C. Yin. Comparison of the effects of cyclic stretching and compression on endothelial cell morphological responses. J. Biomech. Eng. 126(5):545–551, 2004.

    Article  PubMed  Google Scholar 

  23. Wille, J. J., E. L. Elson, and R. J. Okamoto. Cell and matrix mechanics determined by cyclic stretch of bioartificial tissues. Proceedings of the Society for Experimental Mechanics Annual Conference and Exposition, June 4–7, 2006, St. Louis, MO. Paper number 182.

  24. Zahalak, G. I., J. E. Wagenseil, T. Wakatsuki, and E. L. Elson. A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79:2369–2381, 2000.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health through grants AR47591 and GM38838. The authors thank Tetsuro Wakatsuki for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pablo Marquez.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-006-9215-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquez, J.P., Genin, G.M., Pryse, K.M. et al. Cellular and Matrix Contributions to Tissue Construct Stiffness Increase with Cellular Concentration. Ann Biomed Eng 34, 1475–1482 (2006). https://doi.org/10.1007/s10439-006-9160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9160-2

Keywords

Navigation