Skip to main content
Log in

Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(\left[ {{\varvec{a}}} \right] _\times =\left[ {{\begin{array}{ccc} 0&{} {-a_z }&{} {a_y } \\ {a_z }&{} 0&{} {-a_x } \\ {-a_y }&{} {a_x }&{} 0 \\ \end{array} }} \right] \),

References

  1. Do, W.Q.D., Yang, D.C.H.: Inverse dynamic analysis and simulation of a platform type of robot. J. Robot. Syst. 5, 209–227 (1998)

    Article  Google Scholar 

  2. Riebe, S., Ulbrich, H.: Modeling and online computation of the dynamics of a parallel kinematic with six degrees-offreedom. Arch. Appl. Mech. 72, 81–829 (2003)

    MATH  Google Scholar 

  3. Chen, C.T., Liao, T.T.: Trajectory planning of parallel kinematic manipulators for the maximum dynamic load-carrying capacity. Meccanica 51, 1653–1674 (2016)

    Article  MathSciNet  Google Scholar 

  4. Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans. Robot. 20, 755–761 (2004)

    Article  Google Scholar 

  5. Arian, A., Danaei, B., Masouleh, M.T.: Kinematics and dynamics analysis of a 2-DOF spherical parallel robot. In: 2016 4th International Conference on Robotics and Mechatronics, Iran, October, pp. 154–159 (2016)

  6. Schnelle, F., Eberhard, P.: Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters. Acta Mech. Sin. 33, 529–542 (2017)

    Article  MathSciNet  Google Scholar 

  7. Pedrammehr, S., Najdovski, Z., Abdi, H., Nahavandi, S.: Design methodology for a hexarot-based centrifugal high-G simulator. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics, Canada, October, pp. 3255–3260 (2017)

  8. Dasgupta, B., Mruthyunjaya, T.S.: Closed-form dynamic equations of the general Stewart platform through Newton–Euler approach. Mech. Mach. Theory 33, 993–1012 (1998)

    Article  MathSciNet  Google Scholar 

  9. Pedrammehr, S., Mahboubkhah, M., Khani, N.: Improved dynamic equations for the generally configured Stewart platform manipulator. J. Mech. Sci. Technol. 26, 711–721 (2012)

    Article  Google Scholar 

  10. Harib, K., Srinivasan, K.: Kinematic and dynamic analysis of Stewart platform-based machine tool structures. Robotica 21, 541–554 (2003)

    Article  Google Scholar 

  11. Ding, C.T., Yang, S.X., Gan, C.B.: Input torque sensitivity to uncertain parameters in biped robot. Acta Mech. Sin. 29, 452–461 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ting, Y., Chen, Y.S., Jar, H.C.: Modeling and control for a Gough–Stewart platform CNC machine. J. Robot. Syst. 21, 609–623 (2004)

    Article  Google Scholar 

  13. Zhuang, F.F., Wang, Q.: Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints. Acta Mech. Sin. 3, 437–446 (2014)

    Article  MathSciNet  Google Scholar 

  14. Lee, S.S., Lee, J.M.: Design of a general purpose 6-DOF haptic interface. Mechatronics 13, 697–722 (2003)

    Article  Google Scholar 

  15. Yurt, S.N., Anli, E., Ozkol, I.: On the characterization of the dynamic performances of planar manipulators. Meccanica 42, 187–196 (2007)

    Article  Google Scholar 

  16. Wang, W., Yang, H.Y., Zou, J., et al.: Optimal design of Stewart platforms based on expanding the control bandwidth while considering the hydraulic system design. J. Zhejiang Univ. Sci. A 10, 22–30 (2009)

    Article  Google Scholar 

  17. You, W., Kong, M.X., Du, Z.J., et al.: High efficient inverse dynamic calculation approach for a haptic device with pantograph parallel platform. Multibody Syst. Dyn. 21, 233–247 (2009)

    Article  MathSciNet  Google Scholar 

  18. Hu, Q., Jia, Y., Xu, S.: A new computer-oriented approach with efficient variables for multibody dynamics with motion constraints. Acta Astronautica 81, 380–389 (2012)

    Article  Google Scholar 

  19. Jia, Y.H., Hu, Q., Xu, S.J.: Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mech. Sin. 30, 112–124 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hu, Q., Zhang, J.: Dynamics and trajectory planning for reconfigurable space multibody robots. J. Mech. Des. 137, 092304 (2015)

    Article  Google Scholar 

  21. Liu, M.J., Li, C.X., Li, C.N.: Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Trans. Robot. Autom. 16, 94–98 (2000)

    Article  Google Scholar 

  22. Zhang, C.D., Song, S.M.: An efficient method for inverse dynamics of manipulators based on the virtual work principle. J. Robot. Syst. 10, 605–627 (1993)

    Article  Google Scholar 

  23. Wang, J., Gosselin, C.M.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2, 317–334 (1998)

    Article  MathSciNet  Google Scholar 

  24. Tsai, L.W.: Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122, 3–9 (2000)

    Article  Google Scholar 

  25. Gregorio, R.D., Parenti-Castelli, V.: On the characterization of the dynamic performances of planar manipulators. Meccanica 40, 267–279 (2005)

    Article  MathSciNet  Google Scholar 

  26. Zhao, Y., Gao, F.: Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work. Robotica 27, 259–268 (2009)

    Article  Google Scholar 

  27. Abedinnasab, M.H., Vossoughi, G.R.: Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn. 58, 611–622 (2009)

    Article  Google Scholar 

  28. Lopes, A.M.: Dynamic modeling of a Stewart platform using the generalized momentum approach. Commun. Nonlinear Sci. Numer. Simul. 14, 3389–3401 (2009)

    Article  Google Scholar 

  29. Lopes, A.M., Almeida, F.: The generalized momentum approach to the dynamic modeling of a 6-dof parallel manipulator. Multibody Syst. Dyn. 21, 123–146 (2009)

    Article  MathSciNet  Google Scholar 

  30. Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23, 127–140 (2004)

    Article  Google Scholar 

  31. Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput. Integr. Manuf. 24, 167–172 (2008)

    Article  Google Scholar 

  32. Pennock, G.R., Oncu, B.A.: Application of screw theory to rigid body dynamics. J. Dyn. Syst. Meas. Control 114, 262–269 (1992)

    Article  Google Scholar 

  33. Wiens, G.J., Hardage, D.S.: Structural dynamics and system identification of parallel kinematic machines. Proc. IDETC/CIE, PA 2, 749–758 (2006)

    Google Scholar 

  34. Chen, P., Liu, J.Y., Lu, G.C.: A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta Mech. Sin. 33, 189–199 (2017)

    Article  MathSciNet  Google Scholar 

  35. Pedrammehr, S., Mahboubkhah, M., Khani, N.: Natural frequencies and mode shapes for vibrations of machine tools hexapod table. In: 1st International Conference on Acoustics and Vibration, Iran, December, pp. 21–22 (2011)

  36. Pedrammehr, S.: Investigation of factors influential on the dynamic features of machine tools’ hexapod table. 2nd International Conference on Acoustics and Vibration, Iran, December, pp. 26–27 (2012)

  37. Pedrammehr, S., Mahboubkhah, M., Khani, N.: A study on vibration of Stewart platform-based machine tool table. Int. J. Adv. Manuf. Technol. 65, 991–1007 (2013)

    Article  Google Scholar 

  38. Pedrammehr, S., Mahboubkhah, M., Qazani, M.R.C., et al.: Forced vibration analysis of milling machine’s hexapod table under machining forces. Strojniški vestnik-J. Mech. Eng. 60, 158–171 (2014)

    Article  Google Scholar 

  39. Rahmani, A., Ghanbari, A., Pedrammehr, S.: Kinematic analysis for hybrid 2-(6-UPU) manipulator by wavelet neural network. Adv. Mater. Res. 1016, 726–730 (2014)

    Article  Google Scholar 

  40. Qazani, M.R.C., Pedrammehr, S., Nategh, M.J.: A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int. J. Adv. Manuf. Technol. 75, 1763–1771 (2014)

    Article  Google Scholar 

  41. Liu, F., Zhang, J., Hu, Q.: A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Nonlinear Dyn. 90, 1885–1906 (2017)

    Article  MathSciNet  Google Scholar 

  42. Gan, C.B., Ding, C.T., Yang, S.X.: Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances. Acta Mech. Sin. 30, 983–994 (2014)

    Article  MathSciNet  Google Scholar 

  43. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–386 (1965)

    Article  Google Scholar 

  44. Furqan, M., Suhaib, M., Ahmad, N.: Studies on Stewart platform manipulator: a review. J. Mech. Sci. Technol. 31, 4459–4470 (2017)

    Article  Google Scholar 

  45. Pedrammehr, S., Qazani, M.R.C., Abdi, H., et al.: Mathematical modelling of linear motion error for Hexarot parallel manipulators. Appl. Math. Model. 40, 942–954 (2016)

    Article  MathSciNet  Google Scholar 

  46. Pedrammehr, S., Danaei, B., Abdi, H., et al.: Dynamic analysis of Hexarot: axis symmetric parallel manipulator. Robotica 36, 225–240 (2018). https://doi.org/10.1017/S0263574717000315

    Article  Google Scholar 

  47. Mohajerpoor, R., Rezaei, M., Talebi, A., et al.: robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226, 509–522 (2012)

    Article  Google Scholar 

  48. Danaei, B., Arian, A., Masouleh, M.T., et al.: Dynamic modeling and base inertial parameters determination of a 2-DOF spherical parallel mechanism. Multibody Syst. Dyn. 41, 367–390 (2017)

    Article  MathSciNet  Google Scholar 

  49. Al-Wais, S., Mohajerpoor, R., Shanmugam, L., et al.: Improved delay-dependent stability criteria for telerobotic systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–15 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Pedrammehr.

Appendix

Appendix

Hexarot mechanism specifications:

\(a_{i}\)

\(l_{i}\)

\(s_{1}\)

\(s_{2}\)

\(h_{1}\)

\(h_{2}\)

\(h_{3}\)

\(h_{4}\)

\(h_{5}\)

\(h_{6}\)

0.63

1

0.46

0.06

1.835

1.715

1.335

1.215

0.835

0.715

\(m_{p}\)

\(m_{a}\)

\(m_{l}\)

\(r_{ai}\)

\(r_{li}\)

\({ }^{{P}}I_p \)

\(\bar{{I}}_{aaai} \)

\(\bar{{I}}_{nnai} \)

\(\bar{{I}}_{aali} \)

\(\bar{{I}}_{nnli} \)

5.76

7.62

2.43

0.248

0.493

0.404

0.0168

0.37

1.9\(\times 10^{-4}\)

0.198

  1. Note: All quantities in this table are in SI units

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrammehr, S., Nahavandi, S. & Abdi, H. Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work. Acta Mech. Sin. 34, 883–895 (2018). https://doi.org/10.1007/s10409-018-0761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0761-4

Keywords

Navigation