Skip to main content
Log in

Smoothed Particle Hydrodynamics (SPH) simulation of a high-pressure homogenization process

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

High-pressure homogenization is a widely used process in the food, pharmaceutical, and cosmetic industry for producing emulsions. Because of small dimensions and high velocities, the experimental and numerical investigation of such a process is challenging. Hence, the development of products is mostly based on trial and error. In this paper, simulations of a generic high-pressure homogenization process using the Lagrangian, mesh-free smoothed particle hydrodynamics (SPH) method are presented and compared to experimental findings using Micro-Particle Image Velocimetry (μ-PIV). The SPH code has been developed and validated with the scope of simulating technical relevant multi-phase problems (Höfler et al. 2012). The present simulations cover the investigation of two different dynamic viscosities of the dispersed phase as well as different droplet trajectories. The comparison between the simulations and the experiments focusses on the velocity distribution of the continuous phase and the droplet deformation and breakup. In both cases a qualitatively good agreement is observed, demonstrating the ability of our SPH implementation for simulating technical relevant two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229:5011–5021

    Article  MathSciNet  MATH  Google Scholar 

  • Bandara U, Tartakovsky A, Oostrom M, Palmer B, Grate J, Zhang C (2013) Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv Water Resour 62:356–369

    Article  Google Scholar 

  • Batchelor G (2000) An introduction to fluid dynamics, 3rd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bentley BJ, Leal L (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 176:241–283

    Article  MATH  Google Scholar 

  • Blonski S, Korczyk P, Kowalewski T (2007) Analysis of turbulence in a micro-channel emulsifier. Int J Therm Sci 46:1126–1141

    Article  Google Scholar 

  • Brackbill J, Kothe D, Zemach C (1991) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Braun S, Wieth L, Koch R, Bauer H-J (2015) A framework for permeable boundary conditions in SPH: inlet, outlet, periodicity. In: Proceedings of the 10th international SPHERIC workshop

  • Budde C, Schaffner D, Walzel P (2002) Modellversuche zum Tropfenzerfall an Blenden in flüssig/flüssig-Dispersionen. Chem Ing Tech 74:101–104

    Article  Google Scholar 

  • Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Model 22:981–993

    Article  Google Scholar 

  • Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by Smoothed Particle Hydrodynamics. J Comput Phys 191:448–475

    Article  MATH  Google Scholar 

  • Durst F, Ray S, Ünsal B, Bayoumi OA (2005) The development lengths of laminar pipe and channel flows. J Fluids Eng 127:1154–1160

    Article  Google Scholar 

  • Flekkøy E, Coveney P, De Fabritiis G (2000) Foundations of Dissipative Particle Dynamics. Phys Rev E 62:2140–2157

    Article  Google Scholar 

  • Freudig B (2004) Herstellen von Emulsionen und Homogenisieren von Milch in modifizierten Lochblenden. PhD thesis, Universität Karlsruhe (TH)

  • Friberg S (2004) Food emulsions, 4th edn. Dekker, New York

    Google Scholar 

  • Galinat S, Garrido Torres L, Masbernat O (2007) Breakup of a drop in a liquid–liquid pipe flow through an orifice. AIChE J 53:56–68

    Article  Google Scholar 

  • Gaulin A (1899) Appareil et procédé pour la stabilisation du lait. Patent: brevet nr. 295596

  • Gingold R, Monaghan JJ (1977) Smoothed Particle Hydrodynamics theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  • Gothsch T, Schilcher C, Richter C, Beinert S, Dietzel A, Büttgenbach S, Kwade A (2014) High-Pressure Microfluidic Systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluidics 18(1):121–130

  • Grace H (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  Google Scholar 

  • Höfler C (2013) Entwicklung eines Smoothed Particle Hydrodynamics (SPH) Codes zur numerischen Vorhersage des Primärzerfalls an Brennstoffeinspritzdüsen. PhD thesis, Karlsruher Institut für Technologie

  • Höfler C, Braun S, Koch R, Bauer H-J (2012) Multiphase flow simulations using the meshfree Smoothed Particle Hydrodynamics method. In: 12th triennial international conference on liquid atomization and spray systems (ICLASS)

  • Hosseini S, Feng J (2011) Pressure boundary conditions for computing incompressible flows with SPH. J Comput Phys 230:7473–7487

    Article  MathSciNet  MATH  Google Scholar 

  • Hu X, Adams N (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861

    Article  MathSciNet  MATH  Google Scholar 

  • Hu X, Adams N (2007) An incompressible multi-phase SPH method. J Comput Phys 227:264–278

    Article  MATH  Google Scholar 

  • Innings F, Trägardh C (2005) Visualization of the drop deformation and break-up process in a high pressure homogenizer. Chem Eng Technol 28:882–891

    Article  Google Scholar 

  • Innings F, Trägardh C (2007) Analysis of the flow field in a high-pressure homogenizer. Exp Thermal Fluid Sci 32:345–354

    Article  Google Scholar 

  • Innings F, Fuchs L, Trägardh C (2011) Theoretical and experimental analyses of drop deformation and break-up in a scale model of a high-pressure homogenizer. J Food Eng 103:21–28

    Article  Google Scholar 

  • Karbstein H, Schubert H (1995) Einfluparameter auf die Auswahl einer Maschine zur Erzeugung feindisperser o/w-Emulsionen. Chem Ing Tech 76(5):616–619

    Article  Google Scholar 

  • Kaufmann SFM, Feigl K, Fischer P, Windhab EJ (2003) Investigation and visualization of droplet deformation and breakup in complex laminar flow fields. Int Conf Eng Food 9:1–6

    Google Scholar 

  • Kempa L, Schuchmann HP, Schubert H (2006) Tropfenzerkleinerung und Tropfenkoaleszenz beim mechanischen Emulgieren mit Hochdruckhomogenisatoren. Chem Ing Tech 78:765–768

    Article  Google Scholar 

  • Kissling K, Schütz S, Piesche M (2011) Numerical investigation on the deformation of droplets in high-pressure homogenizers. High Perform Comput Sci Eng 10:287–294

    Google Scholar 

  • Köhler K (2010) Simultanes Emulgieren und Mischen. PhD thesis, Karlsruher Institut für Technologie (KIT)

  • Kolb G, Wagner G, Ullrich J (2001) Untersuchungen zum Aufbruch von Einzeltropfen in Dispergiereinheiten zur Emulsionsherstellung. Chem Ing Tech 73:80–83

    Article  Google Scholar 

  • Lastiwka M, Basa M, Quinlan N (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Meth Fluids 61:709–724

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Liu G (2010) Smoothed Particle Hydrodynamics (SPH) an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  • Massey B (1998) Mechanics of fluids. Stanley Thornes, United Kingdom

    MATH  Google Scholar 

  • McClements D (2005) Food emulsions: principles, practice and techniques. CRC Press, Boca Raton

    Google Scholar 

  • Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid method: validation and application to 3D simulation of the primary break-up of liquid jet. Int J Multiph Flow 33(5):510–524

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed Particle Hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  MathSciNet  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  • Morris J, Fox P, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  MATH  Google Scholar 

  • Santiago J, Werely S, Meinhart C, Beebe D, Adrian R (1998) A Particle Image Velocimetry system for microfluidics. Exp Fluids 25:316–319

    Article  Google Scholar 

  • Skillen A, Lind S, Stansby P, Rogers B (2013) Incompressible Smoothed Particle Hydrodynamics (SPH) with reduced temporal noise and generalise Fickian smoothing applied to body-water slam and efficient wave–body interaction. Comput Methods Appl Mech Eng 265:163–173

    Article  MathSciNet  MATH  Google Scholar 

  • Stang M, Schuchmann H, Schubert H (2001) Emulsification in high-pressure homogenizers. Eng Life Sci 4:151–157

    Article  Google Scholar 

  • Steiner H, Teppner R, Brenn G, Vankova N, Tcholakova S, Denkov N (2006) Numerical simulation and experimental study of emulsification in a narrow-gap homogenizer. Chem Eng Sci 61:5841–5855

    Article  Google Scholar 

  • Stevenson MJ, Chen XD (1997) Visualization of the flow patterns in a high-pressure homogenizing valve using a CFD package. J Food Eng 33:151–165

    Article  Google Scholar 

  • Szewc K, Pozorski J, Minier JP (2012) Analysis of the incompressibility constraint in the Smoothed Particle Hydrodynamics method. Int J Numer Meth Eng 92:343–369

    Article  MathSciNet  Google Scholar 

  • Szewc K, Pozorski J, Minier J-P (2013) Simulations of single bubbles rising through viscous liquids using Smoothed Particle Hydrodynamics. Int J Multiph Flow 50:98–105

    Article  Google Scholar 

  • Taylor G (1934) The formation of emulsions in definable fields of flow. Proc R Soc 146:501–523

    Article  Google Scholar 

  • Vennemann P, Kiger K, Lindken R, Groenendijk B, de Vos SS, ten Hagen T, Ursem N, Poelmann R, Westerweel J, Hierck B (2006) In vivo Micro Particle Image Velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39:1191–1200

    Article  Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  Google Scholar 

  • Walstra P, Smulders P (1998) Chapter 2: Emulsion formation. In: Binks B (ed) Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge, pp 56–99

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wieth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The research did not involve human participants and/or animals.

Informed consent

All authors consent to the submission of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieth, L., Kelemen, K., Braun, S. et al. Smoothed Particle Hydrodynamics (SPH) simulation of a high-pressure homogenization process. Microfluid Nanofluid 20, 42 (2016). https://doi.org/10.1007/s10404-016-1705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1705-6

Keywords

Navigation