Skip to main content
Log in

Directed transport and location-designated rotation of nanowires using ac electric fields

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The motion control of individual nanowires is essential for effective nanowire manipulation strategies. In this paper, we demonstrate a simple and general method to dynamically control the motion of a chemically untreated nanowire in a quadrupole electrode structure. The motion of single nanowires was determined by positive dielectrophoresis and orientational torque, which were induced by optionally exerting ac signals onto specific electrodes for regulating the electric field distribution in real time. A silver nanowire was guided to transform postures and transport directionally in a working regime of about 115 μm × 115 μm. The selected nanowire was then transported to a region of weak gradients and forced to rotate at the designated location subsequently. The behavior of the nanowires, including their posture, cornering time, linear displacement and location-designated rotation, was dynamically monitored and regulated. A simple analytical model was developed to derive the driving forces and torques on the nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal R, Ladavac K, Roichman Y, Yu GH, Lieber CM, Grier DG (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13(22):8906–8912

    Article  Google Scholar 

  • Boote JJ, Evans SD (2005) Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16(9):1500–1505

    Article  Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  Google Scholar 

  • Dong LF, Bush J, Chirayos V, Solanki R, Jiao J, Ono Y, Conley JF, Ulrich BD (2005) Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett 5(10):2112–2115

    Article  Google Scholar 

  • Edwards B, Mayer TS, Bhiladvala RB (2006) Synchronous electrorotation of nanowires in fluid. Nano Lett 6(4):626–632

    Article  Google Scholar 

  • Evoy S, DiLello N, Deshpande V, Narayanan A, Liu H, Riegelman M, Martin BR, Hailer B, Bradley JC, Weiss W, Mayer TS, Gogotsi Y, Bau HH, Mallouk TE, Raman S (2004) Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron Eng 75(1):31–42

    Article  Google Scholar 

  • Fan DL, Zhu FQ, Cammarata RC, Chien CL (2004) Manipulation of nanowires in suspension by ac electric fields. Appl Phys Lett 85(18):4175–4177

    Article  Google Scholar 

  • Fan DL, Zhu FQ, Cammarata RC, Chien CL (2005) Controllable high-speed rotation of nanowires. Phys Rev Lett 94(24):247208

    Article  Google Scholar 

  • Fan DL, Cammarata RC, Chien CL (2008a) Precision transport and assembling of nanowires in suspension by electric fields. Appl Phys Lett 92(9):093115

    Article  Google Scholar 

  • Fan ZY, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A (2008b) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8(1):20–25

    Article  Google Scholar 

  • Fan DL, Yin ZZ, Cheong R, Zhu FQ, Cammarata RC, Chien CL, Levchenko A (2010) Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotechnol 5(7):545–551

    Article  Google Scholar 

  • Freer EM, Grachev O, Duan XF, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5(7):525–530

    Article  Google Scholar 

  • Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17(6):1320–1324

    Article  Google Scholar 

  • Jamshidi A (2009) Optoelectronic manipulation, assembly, and patterning of nanoparticles. University of California, Berkeley

    Google Scholar 

  • Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou PY, Chou J, Yang PD, Wu MC (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2(2):85–89

    Article  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Keshoju K, Xing H, Sun L (2007) Magnetic field driven nanowire rotation in suspension. Appl Phys Lett 91(12):123114

    Article  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Article  Google Scholar 

  • Lee SH, Lee HJ, Ino K, Shiku H, Yao T, Matsue T (2009) Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires. J Phys Chem C 113(45):19376–19381

    Article  Google Scholar 

  • Liu YL, Chung JH, Liu WK, Ruoff RS (2006) Dielectrophoretic assembly of nanowires. J Phys Chem B 110(29):14098–14106

    Article  Google Scholar 

  • Marczak M, Hourlier D, Melin T, Adamowicz L, Diesinger H (2010) Frequency dependent rotation and translation of nanowires in liquid environment. Appl Phys Lett 96(23):233502

    Article  Google Scholar 

  • Molhave K, Wich T, Kortschack A, Boggild P (2006) Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17(10):2434–2441

    Article  Google Scholar 

  • Morgan H, Green NG (2002) AC electrokinetics:colloids and nanoparticles. Research Studies Press, Philadelphia

    Google Scholar 

  • Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang PD, Liphardt J (2006) Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5(2):97–101

    Article  Google Scholar 

  • Pevzner A, Engel Y, Elnathan R, Ducobni T, Ben-Ishai M, Reddy K, Shpaisman N, Tsukernik A, Oksman M, Patolsky F (2010) Knocking down highly-ordered large-scale nanowire arrays. Nano Lett 10(4):1202–1208

    Article  Google Scholar 

  • Raychaudhuri S, Dayeh SA, Wang DL, Yu ET (2009) Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett 9(6):2260–2266

    Article  Google Scholar 

  • Sherman FS (1990) Viscous Flow. Mcgraw Hill, New York

    MATH  Google Scholar 

  • Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399

    Article  Google Scholar 

  • Sosnowchik BD, Chang J, Lin LW (2010) Pick, break, and placement of one-dimensional nanostructures for direct assembly and integration. Appl Phys Lett 96(15):153101

    Article  Google Scholar 

  • Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3(9):1229–1233

    Article  Google Scholar 

  • Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246

    Article  Google Scholar 

  • Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463

    Article  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  Google Scholar 

  • Xie P, Xiong QH, Fang Y, Qing Q, Lieber CM (2012) Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol 7(2):119–125

    Article  Google Scholar 

  • Xu F, Durham JW, Wiley BJ, Zhu Y (2011) Strain-release assembly of nanowires on stretchable substrates. ACS Nano 5(2):1556–1563

    Article  Google Scholar 

  • Yan Z, Jureller JE, Sweet J, Guffey MJ, Pelton M, Scherer NF (2012) Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett 12(10):5155–5161

    Article  Google Scholar 

  • Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE, Pei R, Lou J, Nelson BJ (2010) Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4(10):6228–6234

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Program of the National Natural Science Foundation of China (91023024), National 973 Program of China (2011CB707601), The National Natural Science Foundation of China (51145009), New Century Elitist Program by Ministry of Education of China (NCET-07-0180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 914 kb)

Supplementary material 2 (MPG 4038 kb)

Supplementary material 3 (MPG 5664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Xiang, N., Quan, Y. et al. Directed transport and location-designated rotation of nanowires using ac electric fields. Microfluid Nanofluid 16, 237–246 (2014). https://doi.org/10.1007/s10404-013-1203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1203-z

Keywords

Navigation