Skip to main content

Advertisement

Log in

May Rapoport’s Rule Apply to Human Associated Pathogens?

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Many debates surround the generalization of Rapoport’s rule (i.e., the presence of a positive correlation between range size and latitude); however, little attention has been devoted to this spatial pattern (1) worldwide and (2) for pathogenic microorganisms. In this study, we analyzed this relationship for 290 human pathogenic species dispersed throughout the world to test whether pathogenic organisms with different ecological niches and strategies will show this trend. The midpoint method was used to calculate the correlation between the geographical range size and the latitude applied to different subsets of pathogens, including taxonomic subdivisions (bacteria, viruses, helminths, protozoans, and fungi) and categories based on transmission mode and host specificity. It is assumed that Rapoport’s spatial pattern may exist for human infectious diseases, whatever hemisphere is considered, for 5 to 7 of 8 of the selected groups, depending on the pathogen species included. This is the first study performed to investigate Rapoport’s pattern at a global scale for various pathogenic organisms. We also discuss how three well-known spatial patterns of diversity, i.e., latitudinal gradient, nested species pattern, and Rapoport’s rule, may vary together to produce the actual large-scale geographical distribution of human pathogenic species observed on Earth. These findings have important messages for understanding the distribution and the diffusion of human pathogenic species; however, further studies are needed to investigate the exact underlying mechanisms responsible for those patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361-367

    Article  CAS  Google Scholar 

  • Blackburn TM, Gaston KJ (1996) Spatial patterns in the geographic range sizes of bird species in the New World. Philosophical transactions of the Royal Society of London, B: Biological Sciences 351:897-912

    Article  Google Scholar 

  • Brown JH (1995) Macroecology, Chicago, IL: University of Chicago Press

    Google Scholar 

  • Brown JH, Gillooly JF, West GB, Savage VM (2003) The next step in macroecology: from general empirical patterns to universal ecological laws. In: Macroecology: Concepts and Consequences, Blackburn TM, Gaston KJ (editors), Cambridge, UK: Cambridge University Press, pp 408-424

    Google Scholar 

  • Cardillo M (2002) The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator? Journal of Animal Ecology 71:79-87

    Article  Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity: a serious matter for ecology. PLoS Biology 2:e406 (DOI: 10.1371/journal.pbio.0020406)

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. American Naturalist 144:570-595

    Article  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences USA 99:10494–10499

    Article  CAS  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Ecology and Evolution of Communities, Cody ML, Diamond JM (editors), London, UK: Belknap Press of Harvard University Press, pp 342-444

    Google Scholar 

  • Diniz-Filho JAF, Tôrres NM (2002) Rapoport effect in South American Carnivora (Mammalia): null models under geometric and phylogenetic constraints. Brazilian Journal of Biology 62:437-444

    Article  CAS  Google Scholar 

  • Eldredge N (1992) Intersections between the genealogical and ecological realms. In: Systematics, Ecology, and the Biodiversity Crisis, Eldredge N (editor), New York, NY: Columbia University Press, pp 1-14

    Google Scholar 

  • France R (1992) The North American latitudinal gradient in species richness and geographical range of freshwater crayfish and amphipods. American Naturalist 139:342-354

    Article  Google Scholar 

  • Gaston KJ (1994) Measuring geographic range sizes. Ecography 17:198-205

    Article  Google Scholar 

  • Gaston KJ (2003) The Structure and Dynamics of Geographic Ranges, Oxford, UK: Oxford University Press

    Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. Journal of Animal Ecology 65:701-714

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology, Oxford, UK: Blackwell Science

    Book  Google Scholar 

  • Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport’s rule: time for an epitaph? Trends in Ecology and Evolution 13:70-74

    Article  Google Scholar 

  • Gaston KJ, Chown SL (1999) Why Rapoport’s rule does not generalise. Oikos 84:309-312

    Article  Google Scholar 

  • Gaston KJ, Williams PH (1996) Spatial patterns in taxonomic diversity. In: Biodiversity: A Biology of Numbers and Difference, Gaston KJ (Ed.), Cambridge, UK: Blackwell Science, 202-229

    Google Scholar 

  • Guégan J-F, Morand S, Poulin R (2005) Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In: Parasitism and Ecosystems, Thomas F, Renaud F, Guégan J-F (Ed.), Oxford, UK: Oxford University Press, 22-42

    Chapter  Google Scholar 

  • Guernier V, Hochberg ME, Guégan J-F (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biology 2:e141 (DOI: 10.1371/journal.pbio.0020141)

  • Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221

    Article  Google Scholar 

  • Harcourt AH (2000) Latitude and latitudinal extent: a global analysis of the Rapoport effect in a tropical mammalian taxon: primates. Journal of Biogeography 27:1169-1182

    Article  Google Scholar 

  • Hausdorf B (2006) Latitudinal and altitudinal diversity patterns and Rapoport effects in north-west European land snails and their causes. Biological Journal of the Linnean Society 87:309-323

    Article  Google Scholar 

  • Hawkins BA (1990) Global patterns of parasitoid assemblage sizes. Journal of Animal Ecology 59:57-72

    Article  Google Scholar 

  • Hillebrand H, Watermann F, Karez R, Berninger U-G (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114-124

    Article  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences USA 101:15124-15129

    Article  CAS  Google Scholar 

  • Hughes Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. (2006) Microbial biogeography: putting microorganisms on the map. Nature 4:102-112

    Google Scholar 

  • Krasnov BR, Poulin R, Shenbrot GI, Mouillot D, Khokhlova IS (2005) Host specificity and geographic range in haematophagous ectoparasites. Oikos 108:449-456

    Article  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Mouillot D, Poulin R (2008a) Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites. Journal of Biogeography 35:592-601

    Article  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Vinarski M, Korallo-Vinarskaya N, Poulin R (2008b) Geographical patterns of abundance: testing expectations of the ‘abundance optimum’ model in two taxa of ectoparasitic arthropods. Journal of Biogeography 35:2187-2194

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007-2020

    Article  Google Scholar 

  • Letcher AJ, Harvey PH (1994) Variation in geographical range size among mammals of the Palearctic. American Naturalist 144:30-42

    Article  Google Scholar 

  • Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman JL (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography 16:496-509

    Article  Google Scholar 

  • Lyons SK, Willig MR (1997) Latitudinal patterns of range size: methodological concerns and empirical evaluations for New World bats and marsupials. Oikos 79:568-580

    Article  Google Scholar 

  • Merino S, Moreno J, Vasquez RA, Martinez J, Sanchez-Monsalvez I, Estades CF, et al. (2008) Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33:329-340

    Article  Google Scholar 

  • Morin X, Chuine I (2006) Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecology Letters 9:185-195

    Article  Google Scholar 

  • Nee S (2003) Unveiling prokaryotic diversity. Trends in Ecology and Evolution 18:62-63

    Article  Google Scholar 

  • Nunn CL, Altizer SM, Sechrest W, Cunningham AA (2005) Latitudinal gradients of parasite species richness in primates. Diversity and Distribution 11:249-256

    Article  Google Scholar 

  • Pagel MD, May RM, Collie AR (1991) Ecological aspects of the geographical distribution and diversity of mammalian species. American Naturalist 137:791-815

    Article  Google Scholar 

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28:65-82

    Article  Google Scholar 

  • Patterson BD, Brown JH (1991) Regionally nested patterns of species composition in granivorous rodent assemblages. Journal of Biogeography 18:395-402

    Article  Google Scholar 

  • Pianka ER (1989) Latitudinal gradients in species diversity. Trends in Ecology and Evolution 4:223

    Article  Google Scholar 

  • Pither J (2003) Climate tolerance and inter-specific variation in geographic range size. Proceedings of the Royal Society, London B: Biological Sciences 270:475-481

    Article  Google Scholar 

  • Poulin R, Guégan J-F (2000) Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology 30:1147-1152

    Article  CAS  Google Scholar 

  • Poulin R, Krasnov BR, Shenbrot GI, Mouillot D, Khokhlova IS (2006) Evolution of host specificity in fleas: is it directional and irreversible? International Journal for Parasitology 36:185-191

    Article  Google Scholar 

  • Rapoport EH (1982) Areography: Geographical Strategies of Species, Oxford: Pergamon Press

    Google Scholar 

  • Ribas CR, Schoereder JH (2006) Is the Rapoport effect widespread? Null models revisited. Global Ecology and Biogeography 15:614-624

    Article  Google Scholar 

  • Ricklefs RE, Latham RE (1992) Intercontinental correlation of geographic ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs. American Naturalist 139:1305-1321

    Article  Google Scholar 

  • Rohde K (1996) Rapoport’s rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3:10-13

    Article  Google Scholar 

  • Rohde K (1999) Latitudinal gradients in species diversity and Rapoport’s rule revisited: a review of recent work, and what can parasites teach us about the causes of gradients? Ecography 22:593-613

    Article  Google Scholar 

  • Rohde K, Heap M (1998) Latitudinal differences in species and community richness and in community structure of metazoan endo- and ectoparasites of marine teleost fish. International Journal for Parasitology 28:461-474

    Article  CAS  Google Scholar 

  • Rohde K, Heap M, Heap D (1993) Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. American Naturalist 142:1-16

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species Diversity in Space and Time, Cambridge, UK: Cambridge University Press

    Book  Google Scholar 

  • Ruggiero A (1994) Latitudinal correlates of the sizes of mammalian geographical ranges in South America. Journal of Biogeography 21:545-559

    Article  Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography 16:401–414

    Article  Google Scholar 

  • Sax DF (2001) Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. Journal of Biogeography 28:139-150

    Article  Google Scholar 

  • Shenbrot G, Krasnov B, Lu L (2007) Geographical range size and host specificity in ectoparasites: a case study with Amphipsylla fleas and rodent hosts. Journal of Biogeography 34:1679-1690

    Article  Google Scholar 

  • Sizling AL, Storch D, Keil P (2009) Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology 90:3575-3586

    Article  Google Scholar 

  • Smith FDM, May RM, Harvey PH (1994) Geographical ranges of Australian mammals. Journal of Animal Ecology 63:441-450

    Article  Google Scholar 

  • Smith KF, Sax DF, Gaines SD, Guernier V, Guégan J-F (2007) Globalization of human infectious diseases. Ecology 88:1903-1910

    Article  Google Scholar 

  • Stauffer D, Rohde K (2006) Simulation of Rapoport’s rule for latitudinal species spread. Theory in Biosciences 125:55-65

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many speciescoexist in the tropics. American Naturalist 133:240-256

    Article  Google Scholar 

  • Stevens GC (1992a) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. American Naturalist 140:893-911

    Article  CAS  Google Scholar 

  • Stevens GC (1992b) Spilling over the competitive limits to species coexistence. In: Systematics, ecology, and the biodiversity crisis, Eldredge N (Ed.), New York, NY: Columbia University Press, 40-58

    Google Scholar 

  • Venables WN, Ripley BD (1999) Modern Applied Statistics with S-PLUS, 3rd edn, New York, NY: Springer

    Google Scholar 

  • Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerging Infectious Diseases 11:1842-1847

    Google Scholar 

  • Weiser MD, Enquisit BJ, Boyle B, Killeen TJ, Jørgensen PM, Fonseca G, et al. (2007) Latitudinal patterns of range size and species richness of New World woody plants. Global Ecology and Biogeography 16:679-688

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453-470

    Article  Google Scholar 

  • Yang XB, Feng F (2001) Ranges and diversity of soybean fungal diseases in North America. Phytopathology 91:769-775

    Article  CAS  Google Scholar 

  • Zar J (1996) Biostatistical Analysis, 3rd edn, New Jersey: Prentice Hall

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Katherine F. Smith for useful criticisms and comments on a previous version of this paper. The manuscript benefited greatly from the comments by two anonymous referees. The CRVOI (Centre for Scientific Research and Intelligence on Emerging Infectious Diseases in the Indian Ocean), the Institut de Recherche pour le Développement, the Centre National de la Recherche Scientifique and the French School of Public Health supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanina Guernier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guernier, V., Guégan, JF. May Rapoport’s Rule Apply to Human Associated Pathogens?. EcoHealth 6, 509–521 (2009). https://doi.org/10.1007/s10393-010-0290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-010-0290-5

Keywords

Navigation