Skip to main content
Log in

Geophysical characterization of the lithological control on the kinematic pattern in a large clayey landslide (Avignonet, French Alps)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Lithology variation is known to have a major control on landslide kinematics, but this effect may remain unnoticed due to low spatial coverage during investigation. The large clayey Avignonet landslide (French Alps) has been widely studied for more than 35 years. Displacement measurements at 38 geodetic stations over the landslide showed that the slide surface velocity dramatically increases below an elevation of about 700 m and that the more active zones are located at the bottom and the south of the landslide. Most of the geotechnical investigation was carried out in the southern part of the landslide where housing development occurred on lacustrine clay layers. In this study, new electrical prospecting all across the unstable area revealed the unexpected presence of a thick resistive layer covering the more elevated area and overlying the laminated clays, which is interpreted as the lower part of moraine deposits. The downslope lithological boundary of this layer was found at around 700 m asl. This boundary coincides with the observed changes in slide velocity and in surface roughness values computed from a LiDAR DTM acquired in 2006. This thick permeable upper layer constitutes a water reservoir, which is likely to influence the hydromechanical mechanism of the landslide. The study suggests a major control of vertical lithological variations on the landslide kinematics, which is highlighted by the relation between slide velocity and electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Hassanein Z, Benson C, Blotz L (1996a) Electrical resistivity of compacted clays. J Geotech Eng 122:397–406. doi:10.1061/(ASCE)0733-9410(1996)122:5(397)

    Article  Google Scholar 

  • Abu-Hassanein Z, Benson C, Wang X, Blotz L (1996b) Determining bentonite content in soil-bentonite mixtures using electrical conductivity. Geotech Test J 19:51–57

    Article  Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Article  Google Scholar 

  • Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Article  Google Scholar 

  • Baldi P, Cenni N, Fabris M, Zanutta A (2008) Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 102:435–444. doi:10.1016/j.geomorph.2008.04.027

    Article  Google Scholar 

  • Bièvre G, Kniess U, Jongmans D, Pathier E, Schwartz S, van Westen C, Villemin T, Zumbo V (2011) Paleotopographic control of landslides in lacustrine deposits (Trièves plateau, French western Alps). Geomorphology 125:214–224. doi:10.1016/j.geomorph.2010.09.018

    Article  Google Scholar 

  • Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol Process 26:2128–2142. doi:10.1002/hyp.7986

    Article  Google Scholar 

  • Bovis M, Jones P (1992) Holocene history of earthflow mass movements in south-central British Columbia – the influence of hydroclimatic changes. Can J Earth Sci 29:1746–1755

    Article  Google Scholar 

  • Braud I, De Condappa D, Soria J, Haverkamp R, Angulo-Jaramillo R, Galle S, Vauclin M (2005) Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method). Eur J Soil Sci 56:361–374. doi:10.1111/j.1365-2389.2004.00660.x

    Article  Google Scholar 

  • Brocard G, Van Der Beek P, Bourlès D, Siame L, Mugnier J (2003) Long-term fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth Planet Sci Lett 209:197–214

    Article  Google Scholar 

  • Chambers J et al (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland basin, UK. Geomorphology 125:472–484. doi:10.1016/j.geomorph.2010.09.017

    Article  Google Scholar 

  • Coe J, McKenna J, Godt J, Baum R (2009) Basal-topographic control of stationary ponds on a continuously moving landslide. Earth Surf Process Landf 34:264–279. doi:10.1002/esp.1721

    Article  Google Scholar 

  • Corsini A, Pasuto A, Soldati M, Zannoni A (2005) Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 66:149–165

    Article  Google Scholar 

  • Corsini A, Borgatti L, Coren F, Vellico M (2007) Use of multitemporal airborne LiDAR surveys to analyse postfailure behaviour of earthslides. Can J Remote Sens 33:116–120

    Article  Google Scholar 

  • Cruden D, Varnes D (1996) Landslide types and processes. In: Turner A, Schuster R (eds) Landslides investigation and mitigation. National Academic Press, Washington, pp 36–75

    Google Scholar 

  • Daehne A, Corsini A (2013) Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landf 38:640–654. doi:10.1002/esp.3351

  • Debelmas J (1967) La Chapelle-en-Vercors. In: Carte géologique de la France à 1/50000. BRGM Éditions, Orléans, France

  • Delacourt C, Allemand P, Bertier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Geol Fr 178:89–100. doi:10.2113/gssgfbull.178.2.89

    Article  Google Scholar 

  • Di Maio R, Piegari E (2011) Water storage mapping of pyroclastic covers through electrical resistivity measurements. Journal of Applied Geophysics 75:196–202. doi:10.1016/j.jappgeo.2011.07.009

  • Eilertsen R, Hansen L, Bargel T, Solberg I (2008) Clay slides in the Målselv valley, northern Norway: characteristics, occurrence, and triggering mechanisms. Geomorphology 93:548–562

    Article  Google Scholar 

  • Flageollet J, Maquaire O, Martin B, Weber D (1999) Landslides and climatic control conditions in the Barcelonnette and Vars basins (Southern French Alps, France. Geomorphology 30:65–78. doi:10.1016/S0169-555X(99)00045-8

    Article  Google Scholar 

  • François B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Can Geotech J 44:840–857. doi:10.1139/t07-028

    Article  Google Scholar 

  • Friedel S, Thielen A, Springman S (2006) Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Applied Geophysics 60:100–114. doi:10.1016/j.jappgeo.2006.01.001

  • Gerber R, Howard K (2000) Recharge through a regional till aquitard: three-dimensional flow model water balance approach. Ground Water 38:410–422. doi:10.1111/j.1745-6584.2000.tb00227.x

    Article  Google Scholar 

  • Giraud A, Antoine P, Van Asch T, Nieuwenhuis J (1991) Eng Geol 31:185–195. doi:10.1016/0013-7952(91)90005-6

    Article  Google Scholar 

  • Golden Software (2012) Surfer user manual. Golden Software, Golden

    Google Scholar 

  • Guerriero L, Coe J, Revellino P, Grelle G, Pinto F, Guadagno F (2014) Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy. Geomorphology 219:285–305. doi:10.1016/j.geomorph.2014.04.039

    Article  Google Scholar 

  • Handwerger A, Roering J, Schmidt D (2013) Controls on the seasonal deformation of slow-moving landslides. Earth Planet Sci Lett 377–378:239–247. doi:10.1016/j.epsl.2013.06.047

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. doi:10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Iverson R (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Iverson R (2004) Regulation of landslide motion by dilatancy and pore pressure feedback. J Geophys Res Earth Surf 110, F02015. doi:10.1029/2004JF000268

    Google Scholar 

  • Iverson R, Major J (1987) Rainfall, groundwater-flow, and seasonal movement at Minor Creek landslide, northwestern California - Physical interpretation of empirical relations. Geol Soc Am Bull 99:579–594. doi:10.1130/0016-606(1987)99<579:RGFASM>2.0.CO;2

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. doi:10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Geol Fr 178:101–112

    Article  Google Scholar 

  • Jongmans D, Bièvre G, Schwartz S, Renalier F, Beaurez N (2009) Geophysical investigation of the large Avignonet landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56. doi:10.1016/j.enggeo.2008.10.005

    Article  Google Scholar 

  • Keefer D (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  • Keefer D (2002) Investigating landslides caused by earthquakes - a historical review. Surv Geophys 23:473–510

    Article  Google Scholar 

  • Kelsey H (1978) Earthflows in Franciscan melange, Van Duzen River basin, California. Geology 6:361–364. doi:10.1130/0091-7613(1978)6<361:EIFMVD>2.0.CO;2

    Article  Google Scholar 

  • Kniess U (2011) Quantification de l'évolution de glissements argileux par des techniques de télédétection. Application à la région du Trièves (Alpes Françaises occidentales). PhD thesis in English, Université de Grenoble, France.

  • Kniess U, Travelletti J, Daehne A, Krzeminska D, Bièvre G, Jongmans D, Corsini A, Bogaard T, Malet J (2014) Innovative techniques for the characterization of the morphology, geometry and hydrological features of slow-moving landslides. In: Van Asch T J W, Corominas J, Greiving S, Malet J-P, Sterlacchini S (eds.) Mountain risks: from prediction to management and governance. Springer Netherlands. pp. 57–82. doi: 10.1007/978-94-007-6769-0_3

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70:B11–B18

    Article  Google Scholar 

  • Lassabatère L, Angulo-Jaramillo R, Soria Ugalde J, Cuenca R, Braud I, Haverkamp R (2006) Beerkan estimation of soil transfer parameters through infiltration experiments - BEST. Soil Sci Soc Am J 70:521–532. doi:10.2136/sssaj2005.0026

    Article  Google Scholar 

  • Lebourg T, Hernandez M, Zerathe S, Bedoui S, Jomard H, Fresia B (2010) Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Eng Geol 114:238–250. doi:10.1016/j.enggeo.2010.05.001

    Article  Google Scholar 

  • Lee C, Zeng L, Hsieh C, Yu C, Hsieh S (2012) Determination of mechanisms and hydrogeological environments of Gangxianlane landslides using geoelectrical and geological data in central Taiwan. Environmental Earth Sciences 66:1641–1651. doi:10.1007/s12665-012-1522-5

  • Loke M, Barker R (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke M, Chambers J, Rucker D, Kuras O, Wilkinson P (2013) Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95:135–156. doi:10.1016/j.jappgeo.2013.02.017

  • Lorier L, Desvarreux P (2004) Glissement du Mas d'Avignonet, commune d'Avignonet. In: Proceedings of the workshop Ryskhydrogeo, Program Interreg III, La Mure (France)

  • Mackey B, Roering J, McKean J (2009) Long-term kinematics and sediment flux of an active earthflow, Eel River, California. Geology 37:803–806. doi:10.1130/G30136A.1

    Article  Google Scholar 

  • Malet J, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43:33–54. doi:10.1016/S0169-555X(01)00098-8

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, tools for seismic analysis of porous media, 2nd edition, Cambridge University Press, Cambridge

  • Monjuvent G (1973) La transfluence Durance-Isère. Essai de synthèse du Quaternaire du bassin du Drac (Alpes françaises). Géol Alpine 49:57–118

    Google Scholar 

  • Moulin C, Robert Y (2004) Le glissement de l'Harmalière sur la commune de Sinard. In: Proceedings of the workshop Ryskhydrogeo, Program Interreg III, La Mure (France), 11 pp

  • Oppikofer T, Jaboyedoff M, Keusen H (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535. doi:10.1038/ngeo258

    Article  Google Scholar 

  • Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82. doi:10.1016/j.earscirev.2014.04.002

    Article  Google Scholar 

  • Petley D, Mantovani F, Bulmer M, Zannoni A (2005) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66:133–147. doi:10.1016/j.geomorph.2004.09.011

    Article  Google Scholar 

  • Picarelli L (2000) Mechanisms and Rates of Slope Movements in Fine Grained Soils. In: Proceedings of the International Conference on Geotechnical and Geological Engineering, GEOENG2000, Melbourne, Australia. pp. 1618–1670

  • Picarelli L, Urciuoli G, Russo C (2004) The role of groundwater regime on behaviour of clayey slopes. Can Geotech J 41:467–484

    Article  Google Scholar 

  • Renalier F, Bièvre G, Jongmans D, Campillo M, Bard P (2010a) Characterization and monitoring of unstable clay slopes using active and passive shear wave velocity measurements. In: Miller R, Bradford J, Holliger K (eds) Advances in near-surface seismology and ground-penetrating radar. Society of Exploration Geophysics, Tulsa, pp 397–414. doi:10.1190/1.9781560802259.ch24

    Chapter  Google Scholar 

  • Renalier F, Jongmans D, Campillo M, Bard P (2010b) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross-correlation. J Geophys Res 115, F03032. doi:10.1029/2009JF001538

    Article  Google Scholar 

  • Reynolds J (1997) An introduction to applied and environmental geophysics. Wiley and Sons, Chichester

    Google Scholar 

  • Rodriguez C, Bommer J, Chandler R (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346. doi:10.1016/S0267-7261(99)00012-3

    Article  Google Scholar 

  • Roering J, Stimely L, Mackey B, Schmidt D (2009) Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophys Res Lett 36, L19402. doi:10.1029/2009GL040374

    Article  Google Scholar 

  • Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope motion by means of SAR interferometry: a case study from a mass waste above a reservoir in the Otztal Alps, Austria. Geophys Res Lett 26:1629–1632. doi:10.1029/1999GL900262

    Article  Google Scholar 

  • Schwab M, Rieke-Zapp D, Schneider H, Liniger M, Schlunegger F (2008) Landsliding and sediment flux in the Central Swiss Alps: a photogrammetric study of the Schimbrig landslide, Entlebuch. Geomorphology 97:392–406. doi:10.1016/j.geomorph.2007.08.019

    Article  Google Scholar 

  • Shepard M, Campbell B, Bulmer M, Farr T, Gaddis L, Plaut J (2001) The roughness of natural terrain: a planetary and remote sensing perspective. J Geophys Res 106:32777–32795. doi:10.1029/2000JE001429

    Article  Google Scholar 

  • Slater L, Lesmes D (2002) Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resour Res 38:31-1-31-13. doi: 10.1029/2001WR001075

  • Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68:53–66

    Article  Google Scholar 

  • Stiros S, Vichas C, Skourtis C (2004) Landslide monitoring based on geodetically derived distance changes. J Surv Eng 130:156–162

    Article  Google Scholar 

  • Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201

    Article  Google Scholar 

  • Tabbagh A, Cosenza P (2007) Effect of microstructure on the electrical conductivity of clay-rich systems. Physics and Chemistry of the Earth, Parts A/B/C 32:154–160. doi:10.1016/j.pce.2006.02.045

  • Teza G, Pesci A, Genevois R, Galgaro A (2008) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97:424–437. doi:10.1016/j.geomorph.2007.09.003

    Article  Google Scholar 

  • Travelletti J, Sailhac P, Malet J, Grandjean G, Ponton J (2011) Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrol Process 26:2106–2119. doi:10.1002/hyp.7983

    Article  Google Scholar 

  • Travelletti J, Delacourt C, Allemand P, Malet J, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm Remote Sens 70:39–55. doi:10.1016/j.isprsjprs.2012.03.007

    Article  Google Scholar 

  • Travelletti J, Malet J, Samyn K, Grandjean G, Jaboyedoff M (2013) Control of landslide retrogression by discontinuities: evidences by the integration of airbone- and ground-based geophysical information. Landslides 10:37–54. doi:10.1007/s10346-011-0310-8

    Article  Google Scholar 

  • Van Asch T, Hendriks M, Hessel R, Rappange F (1996) Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng Geol 42:239–251

    Article  Google Scholar 

  • Van Asch T, Buma J, Van Beek L (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32

    Article  Google Scholar 

  • Van Asch T, Malet J, Van Beek L (2006) Influence of landslide geometry and kinematic deformation to describe the liquefaction of landslides: some theoretical considerations. Eng Geol 88:59–69. doi:10.1016/j.enggeo.2006.08.002

    Article  Google Scholar 

  • Van Asch T, Van Beek L, Bogaard T (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55. doi:10.1016/j.enggeo.2006.12.012

    Article  Google Scholar 

  • Van Asch T, Malet J, Bogaard T (2009) The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Nat Hazards Earth Syst Sci 9:739–749

    Article  Google Scholar 

  • Van der Spek J, Bogaard T, Bakker M (2013) Characterization of groundwater dynamics in landslides in varved clays. Hydrol Earth Syst Sci 10:295–324. doi:10.5194/hessd-10-295-2013

    Article  Google Scholar 

  • Van Genuchten P, Van Asch T (1988) Factors controlling the movement of a landslide in varved clays near La Mure (French Alps). Bull Soc Geol Fr 8:461–469

    Google Scholar 

  • Varnes D (1978) Slope movement types and processes. In: Schuster R, Krizek R (eds) Landslides: analysis and control. National Academic Press, Washington, pp 11–33

    Google Scholar 

  • Vuillermet E, Cordary D, Giraud A (1994) Caractéristiques hydrauliques des argiles litées du Trièves (Isère). Bull Int Assoc Eng Geol 49:85–90

    Article  Google Scholar 

  • Wang G (2011) GPS landslide monitoring: single base vs network solutions - a case study based on the Puerto Rico and Virgin Islands permanent GPS network. J Geod Sci 1:191–203. doi:10.2478/v10156-010-0022-3

    Google Scholar 

  • Wentworth C (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Yilmaz D, Lassabatère L, Angulo-Jaramillo R, Deneele D, Legret M (2010) Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J 9:107–116. doi:10.2136/vzj2009.0039

    Article  Google Scholar 

  • Zhang X, Phillips C, Pearce A (1991) Surface movement in an earthflow complex, Raukumara Peninsula, New Zealand. Geomorphology 4:261–272. doi:10.1016/0169-555X(91)90009-Y

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly funded by IFSTTAR (French Institute of Science and Technology for Transport, Development and Networks) through programmes ‘Sécheresse’ (draught) and ‘Mouvements de terrain’ (Landslides). GPS data for stations AVP and AVN were provided by OMIV (Multidisciplinary Observatory of Versant Instabilities; http://omiv.osug.fr). This work has been supported by a grant from LabEx Osug@2020 (Investissements d’avenir—ANR10LABX56. The authors also wish to thank students from the University of Grenoble (PhiTEM and Polytech) for their help in the field. Finally, the authors wish to thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Bièvre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bièvre, G., Jongmans, D., Goutaland, D. et al. Geophysical characterization of the lithological control on the kinematic pattern in a large clayey landslide (Avignonet, French Alps). Landslides 13, 423–436 (2016). https://doi.org/10.1007/s10346-015-0579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0579-0

Keywords

Navigation