Skip to main content
Log in

Adjusting migration schedules at stopping sites: time strategy of a long-distance migratory shorebird during northward migration

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Selection of timing to match optimal environments is crucial for migrants that breed at high latitudes where there is a narrow time window suitable for breeding. However, birds generally depart from non-breeding grounds in a broad time window. How birds adjust their migration schedule to match optimal timing of arrival at breeding grounds is largely unexplored. We radio-tracked Great Knots Calidris tenuirostris at stopping sites in the southern and northern Yellow Sea during the entire stopping periods to determine their time schedules during northward migration. Great Knots stayed for 40.7 ± 9.2 days (n = 11) in the whole Yellow Sea, with the early arrivals having a longer length of stay than the late arrivals. There was no significant difference in the length of stay between birds that arrived on various dates in the southern Yellow Sea, while the late arrivals spent less time during flights from the southern to the northern Yellow Sea, and stayed for a shorter time than the early arrivals in the northern Yellow Sea. We estimated that the later arrivals can still moult into full breeding plumage and deposit enough fuel for a flight to the breeding grounds before departure. We propose that early and latter migration are the two ends of migratory schedule, with the former adapting to unpredictable and rigorous environments and the latter to stable and favourable environments en route. Stopping sites play an important role for birds to adjust their migration schedule to meet optimal timing of arrival at migratory destination.

Zusammenfassung

Anpassung des Zugablaufs in Rastgebieten: Zeitstrategie eines Langstreckenziehers während des Heimzuges

Das ‘Timing’ während des Zuges und die Abstimmung auf optimale Umweltbedingungen sind für arktische Brutvögel entscheidend, da sie nur ein schmales Zeitfenster zum Brüten haben. Allerdings fliegen die Vögel im Allgemeinen in einem breiten Zeitfenster aus ihren Überwinterungsgebieten ab. Wie Vögel ihren Zugablauf anpassen, um ihre Ankunft in den Brutgebieten zeitlich optimal zu abzustimmen, ist weitgehend unerforscht. Wir besenderten Große Knutts Calidris tenuirostris in Rastgebieten im südlichen und nördlichen Gelben Meer während der gesamten Rastperiode, um ihren Zeitplan während des Heimzuges zu ermitteln. Große Knutts rasten 40,7 ± 9,2 Tage im Gelben Meer, wobei früh Ankommende länger bleiben als spät ankommende Vögel. Es gab keinen signifikanten Unterschied in der Rastdauer von Vögeln, die zu verschiedenen Zeitpunkten im südlichen Gelben Meer ankamen. Die später ankommenden Vögel brauchten weniger Zeit für den Flug zwischen südlichem und nördlichem Gelben Meer und rasteten kürzer als die Vögel, die früher im Gelben Meer ankamen. Wir schätzen, dass die später angekommenen Vögel vor dem Weiterflug noch in das komplette Brutkleid mausern und genug Fettreserven für den Zug in die Brutgebiete anlagen können. Wir denken, dass früher und später Zug die beiden Enden des Zugzeitplans darstellen. Ersteres ist angepasst an unvorhersehbare und strenge Bedingungen, letzteres an stabile und günstige Bedingungen en route. Rastgebiete spielen eine wichtige Rolle für Vögel im Zusammenhang mit der Anpassung ihres Zugablaufs für ein optimales Timing hinsichtlich der Ankunft in den Brutgebieten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson PW, Baker AJ, Bennett KA, Clark NA, Clark JA, Cole KB, Dekinga A, Dey A, Gillings S, GonzÁLez PM, Kalasz K, Minton CDT, Newton J, Niles LJ, Piersma T, Robinson RA, Sitters HP (2007) Rates of mass gain and energy deposition in red knot on their final spring staging site is both time- and condition-dependent. J Appl Ecol 44(4):885–895

    Google Scholar 

  • Battley PF (2006) Consistent annual schedules in a migratory shorebird. Biol Lett 2(4):517–520

    PubMed  PubMed Central  Google Scholar 

  • Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K (2000) Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc Lond B 267(1439):191–195

    CAS  Google Scholar 

  • Battley PF, Piersma T, Rogers DI, Dekinga A, Spaans B, Van Gils JA (2004) Do body condition and plumage during fuelling predict northwards departure dates of great knots Calidris tenuirostris from northwest Australia? Ibis 146(1):46–60

    Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411(6835):296–298

    CAS  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Choi C, Gan X, Ma Q, Zhang K, Chen J, Ma Z (2009) Body condition and fuel deposition patterns of calidrid sandpipers during migratory stopover. Ardea 97(1):61–70

    Google Scholar 

  • Choi C, Battley P, Potter M, Rogers K (2014) The importance of Yalu Jiang coastal wetland in the north Yellow Sea to Bar-tailed Godwits Limosa lapponica and great knots Calidris tenuirostris during northward migration. Bird Conserv Int. doi:10.1017/S0959270914000124

  • Conklin JR, Battley PF (2011) Impacts of wind on individual migration schedules of New Zealand bar-tailed godwits. Behav Ecol 22(4):854–861

    Google Scholar 

  • Conklin JR, Battley PF, Potter MA, Fox JW (2010) Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nat Commun 1:67

    PubMed  Google Scholar 

  • Conklin JR, Battley PF, Potter MA (2013) Absolute consistency: individual versus population variation in annual-cycle schedules of a long-distance migrant bird. PLoS ONE 8(1):e54535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coppack T, Tøttrup AP, Spottiswoode C (2006) Degree of protandry reflects level of extrapair paternity in migratory songbirds. J Ornithol 147(2):260–265

    Google Scholar 

  • Dawson A, Hinsley SA, Ferns PN, Bonser RH, Eccleston L (2000) Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc R Soc Lond B 267(1457):2093–2098

    CAS  Google Scholar 

  • Dietz MW, Rogers KG, Piersma T (2013) When the seasons don’t fit: speedy molt as a routine carry-over cost of reproduction. PLoS ONE 8(1):e53890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drent R, Both C, Green M, Madsen J, Piersma T (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103(2):274–292

    Google Scholar 

  • Farmer AH, Wiens JA (1998) Optimal migration schedules depend on the landscape and the physical environment: a dynamic modeling view. J Avian Biol 29(4):405–415

    Google Scholar 

  • Farmer AH, Wiens JA (1999) Models and reality: time-energy trade-offs in pectoral sandpiper (Calidris melanotos) migration. Ecology 80(8):2566–2580

    Google Scholar 

  • Gillings S, Atkinson PW, Baker AJ, Bennett KA, Clark NA, Cole KB, González PM, Kalasz KS, Minton CDT, Niles LJ, Porter RC, Serrano IDL, Sitters HP, Woods JL (2009) Staging behavior in red knot (Calidris canutus) in Delaware bay: implications for monitoring mass and population size. Auk 126(1):54–63

    Google Scholar 

  • Hua N, Piersma T, Ma Z (2013) Three-phase fuel deposition in a long-distance migrant, the red knot (Calidris canutus piersmai), before the flight to high arctic breeding grounds. PLoS ONE 8(4):e62551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iverson GC, Warnock S, Butler RW, Bishop MA, Warnock N (1996) Spring migration of western sandpipers along the Pacific coast of north America: a telemetry study. Condor 98(1):10–21

    Google Scholar 

  • Karubian J (2002) Costs and benefits of variable breeding plumage in the red-backed fairy-wren. Evolution 56(8):1673–1682

    PubMed  Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68(5):940–950

    Google Scholar 

  • Lehikoinen ESA, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. In: A Moller WF, Berthold P (eds) Advances in ecological research, 35th edn. Academic, San Diego, pp 1–31

    Google Scholar 

  • Lemke HW, Tarka M, Klaassen RH, Akesson M, Bensch S, Hasselquist D, Hansson B (2013) Annual cycle and migration strategies of a trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE 8(10):e79209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenço PM, Kentie R, Schroeder J, Groen NM, Hooijmeijer JCEW, Piersma T (2011) Repeatable timing of northward departure, arrival and breeding in Black-tailed Godwits Limosa l. limosa, but no domino effects. J Ornithol 152(4):1023–1032

    Google Scholar 

  • Lyons JE, Haig SM (1995) Fat content and stopover ecology of spring migrant semipalmated sandpipers in south Carolina. Condor 97(2):427–437

    Google Scholar 

  • Ma Z, Hua N, Zhang X, Guo H, Zhao B, Ma Q, Xue W, Tang C (2011) Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis 153(4):755–767

    Google Scholar 

  • Ma Z, Hua N, Peng H, Choi C, Battley PF, Zhou Q, Chen Y, Ma Q, Jia N, Xue W, Bai Q, Wu W, Feng X, Tang C (2013) Differentiating between stopover and staging sites: functions of the southern and northern Yellow Sea for long-distance migratory shorebirds. J Avian Biol 44(5):504–512

    Google Scholar 

  • MacKinnon J, Verkuil YI, Murray N (2012) IUCN situation analysis on East and southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occasional Paper of the IUCN Species Survival Commission No 47

  • Maggini I, Bairlein F (2012) Innate sex differences in the timing of spring migration in a songbird. PLoS ONE 7(2):e31271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4(6):663–673

    Google Scholar 

  • Nolet BA, Drent RH (1998) Bewick’s swans refuelling on pondweed tubers in the Dvina bay (White Sea) during their spring migration: first come, first served. J Avian Biol 29(4):574–581

    Google Scholar 

  • Piersma T (1987) Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed. Limosa 60:185–194 (in Dutch)

    Google Scholar 

  • Piersma T, Zwarts L, Bruggemann JH (1990) Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78:157–184

    Google Scholar 

  • Piersma T, Van Gils JA, Wiersma P (1996) Family scolopacidae (sandpipers, snipes and phalaropes). In: Del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Lynx, Barcelona, pp 444–533

  • Prop J, Black JM, Shimmings P (2003) Travel schedules to the high arctic: barnacle geese trade-off the timing of migration with accumulation of fat deposits. Oikos 103(2):403–414

    Google Scholar 

  • Rani S, Kumar V (2013) Avian circannual systems: persistence and sex differences. Gen Comp Endocrinol 190:61–67

    CAS  PubMed  Google Scholar 

  • Rogers DI, Yang H-Y, Hassell CJ, Boyle AN, Rogers KG, Chen B, Zhang Z-W, Piersma T (2010) Red knots (Calidris canutus piersmai and C. c. rogersi) depend on a small threatened staging area in Bohai Bay, China. Emu 110(4):307–315

    Google Scholar 

  • Schaub M, Jenni L (2000) Fuel deposition of three passerine bird species along the migration route. Oecologia 122(3):306–317

    CAS  Google Scholar 

  • Shamoun-Baranes J, Bouten W, van Loon EE (2010) Integrating meteorology into research on migration. Integr Comp Biol 50(3):280–292

    PubMed  PubMed Central  Google Scholar 

  • Tomkovich PS (1997) Breeding distribution, migrations and conservation status of the great knot Calidris tenuirostris in Russia. Emu 97(4):265–282

    Google Scholar 

  • Wang N, Zhang ZW (2009) The novel primers for sex identification in the brown eared-pheasant and their application to other species. Mol Ecol Resour 9(1):186–188

    PubMed  Google Scholar 

  • Warnock N, Bishop MA (1998) Spring stopover ecology of migrant western sandpipers. Condor 100(3):456–467

    Google Scholar 

  • Warnock N, Warnock S (1993) Attachment of radio-transmitters to sandpipers :review and methods. Wader Study Group Bull 70:28–30

    Google Scholar 

  • Warnock N, Takekawa JY, Bishop MA (2004) Migration and stopover strategies of individual dunlin along the Pacific coast of north America. Can J Zool 82(11):1687–1697

    Google Scholar 

  • Weber TP, Ens BJ, Houston AI (1998) Optimal avian migration: a dynamic model of fuel stores and site use. Evol Ecol 12(4):377–401

    Google Scholar 

  • Zwarts L, Wanink JH (1993) How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Neth J Sea Res 31(4):441–476

    Google Scholar 

  • Zwarts L, Ens BJ, Kersten M, Piersma T (1990) Moult mass and flight range of waders ready to take off for long-distance migrations. Ardea 78(2):339–364

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (2013CB430404), the National Natural Science Foundation of China (31071939, 30670269) and Technology Department of Shanghai (Grant no. 12231204702, 13231203503). We thank the Chongming Dongtan Nature Reserve and the Yalu Estuarine Wetland Nature Reserve for facilitating our fieldwork. We appreciate A. Cantero, P. Brakels, J. Qian, N. Jia, Q.Q. Bai, J.Y. Liu, and X. Zhang for their assistance during the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Ma.

Additional information

Communicated by N. Chernetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, HB., Hua, N., Choi, CY. et al. Adjusting migration schedules at stopping sites: time strategy of a long-distance migratory shorebird during northward migration. J Ornithol 156, 191–199 (2015). https://doi.org/10.1007/s10336-014-1119-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1119-8

Keywords

Navigation