Skip to main content
Log in

Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase (“classic cellulase”) transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamczewska AM, Morris S (2001) Ecology and behavior of Gecarcoidea natalis, the Christmas Island red crab, during the annual breeding migration. Biol Bull 200:305–320

    Article  Google Scholar 

  • Allardyce BJ, Linton SM (2008) Purification and characterisation of endo-β-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor. J Exp Biol 211:2275–2287

    Article  PubMed  CAS  Google Scholar 

  • Allardyce BJ, Linton SM (2012) Characterisation of cellulose and hemicellulose digestion in land crabs with special reference to Gecarcoidea natalis. Aust J Zool 59:380–391

    Article  Google Scholar 

  • Allardyce BJ, Linton SM, Saborowski R (2010) The last piece in the cellulase puzzle: the characterisation of β-glucosidase from the herbivorous gecarcinid land crab Gecarcoidea natalis. J Exp Biol 213:2950–2957

    Article  PubMed  CAS  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell wall. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 14. Academic Press, New York, pp 297–371

    Chapter  Google Scholar 

  • Bateman A et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bond JS, Beynon RJ (1995) The astacin family of metalloendopeptidases. Protein Sci 4:1247–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bray N, Pimentel H, Melsted P, Pachter L (2015) Near-optimal RNA-Seq quantification. arXiv preprint arXiv:150502710

  • Brunet M, Arnaud J, Mazza J (1994) Gut structure and digestive cellular processes in marine Crustacea. Oceanogr Mar Biol Annu Rev 32:335–367

    Google Scholar 

  • Busch A, Kunert G, Heckel DG, Pauchet Y (2017) Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles. PLoS One 12:e0184305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 16:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dammannagoda LK, Pavasovic A, Prentis PJ, Hurwood DA, Mather PB (2015) Expression and characterization of digestive enzyme genes from hepatopancreatic transcripts from redclaw crayfish (Cherax quadricarinatus). Aquac Nutr 21:868–880

    Article  CAS  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert D (2016) Accurate & complete gene construction with Evidential Gene. F1000Research 5:1567

  • Gray M, Linton SM, Allardyce BJ (2018) cDNA sequences of GHF9 endo-β-1,4-glucanases in terrestrial Crustacea. Gene 642:408–422

    Article  PubMed  CAS  Google Scholar 

  • Green PT (1997) Red crabs in rain forest on Christmas Island, Indian Ocean: activity patterns, density and biomass. J Trop Ecol 13:17–38

    Article  Google Scholar 

  • Green P, O’Dowd D, Lake P (2008) Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer. Oecologia 156:373–385

    Article  PubMed  Google Scholar 

  • Greenaway P, Linton SM (1995) Dietary assimilation and food retention time in the herbivorous terrestrial crab Gecarcoidea natalis. Physiol Zool 68:1006–1028

    Article  Google Scholar 

  • Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest. Physiol Zool 71:36–44

    Article  PubMed  CAS  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21

    PubMed  PubMed Central  Google Scholar 

  • Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, BR MM (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 7–54

    Google Scholar 

  • Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y (2017) dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res 46:D516–D521

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim M-K, An YJ, Song JM, Jeong CS, Kang MH, Kwon KK, Lee YH, Cha SS (2014) Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-d-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Proteins Struct Funct Bioinf 82:3217–3223

  • King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bowles DJ, Bruce NC, Graham IA, McQueen-Mason SJ (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc Natl Acad Sci U S A 107:5345–5350

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai JCY, Shih H-T, Ng PKL (2017) The systematics of land crabs of the genus Gecarcoidea and recognition of a pseudocryptic species, G. humei, from the eastern Indian Ocean (Crustacea : Decapoda : Gecarcinidae). Invertebr Syst 31:406–426

    Article  Google Scholar 

  • Larsson AM, Anderson L, Xu B, Muñoz IG, Usón I, Janson JC, Stålbrand H, Ståhlberg J (2006) Three-dimensional crystal structure and enzymic characterization of β-mannanase Man5A from blue mussel Mytilus edulis. J Mol Biol 357:1500–1510

    Article  PubMed  CAS  Google Scholar 

  • Linton SM, Greenaway P (2004) Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. J Exp Biol 207:4095–4104

    Article  PubMed  CAS  Google Scholar 

  • Linton SM, Greenaway P (2007) A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. J Comp Physiol B 177:269–286

    Article  PubMed  Google Scholar 

  • Linton SM, Shirley AJ (2011) Isozymes from the herbivorous gecarcinid land crab, Gecarcoidea natalis that possess both lichenase and endo-β-1,4-glucanase activity. Comp Biochem Physiol B Biochem Mol Biol 160:44–53

    Article  PubMed  CAS  Google Scholar 

  • Linton SM, Saborowski R, Shirley AJ, Penny JA (2014) Digestive enzymes of two brachyuran and two anomuran land crabs from Christmas Island, Indian Ocean. J Comp Physiol B 184:449–468

    Article  PubMed  CAS  Google Scholar 

  • Linton SM, Cameron MS, Gray MC, Donald JA, Saborowski R, von Bergen M, Tomm JM, Allardyce BJ (2015) A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans. Gene 569:203–217

    Article  PubMed  CAS  Google Scholar 

  • Mizutani K, Tsuchiya S, Toyoda M, Nanbu Y, Tominaga K, Yuasa K, Takahashi N, Tsuji A, Mikami B (2012) Structure of β-1,4-mannanase from the common sea hare Aplysia kurodai at 1.05 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1164–1168

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  PubMed  CAS  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni J, Takehara M, Watanabe H (2010) Identification of activity related amino acid mutations of a GH9 termite cellulase. Bioresour Technol 101:6438–6443

    Article  PubMed  CAS  Google Scholar 

  • O'dowd DJ, Lake PS (1989) Red crabs in rain forest, Christmas Island: removal and relocation of leaf-fall. J Trop Ecol 5:337–348

    Article  Google Scholar 

  • O'dowd DJ, Green PT, Lake PS (2003) Invasional “meltdown” on an oceanic island. Ecol Lett 6:812–817

    Article  Google Scholar 

  • Ootsuka S, Saga N, Suzuki K-i, Inoue A, Ojima T (2006) Isolation and cloning of an endo-β-1,4-mannanase from Pacific abalone Haliotis discus hannai. J Biotechnol 125:269–280

    Article  PubMed  CAS  Google Scholar 

  • Pocock RI (1888) On the Arachnida, Myriopoda, and Land-Crustacea of Christmas Island. Proc Zool Soc London 56:556–564

    Article  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, Toyohara H (2009) Putative endogenous xylanase from brackish-water clam Corbicula japonica. Comp Biochem Physiol B Biochem Mol Biol 154:85–92

  • Sakamoto K, Uji S, Kurokawa T, Toyohara H (2009) Molecular cloning of endogenous β-glucosidase from common Japanese brackish water clam Corbicula japonica. Gene 435:72–79

    Article  PubMed  CAS  Google Scholar 

  • Sherman PM (2003) Effects of land crabs on leaf litter distributions and accumulations in a mainland tropical rain forest. Biotropica 35:365–374

    Article  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  PubMed  CAS  Google Scholar 

  • Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song L, Florea L (2015) Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song JM, Nam K-W, Kang SG, Kim C-G, Kwon S-T, Lee Y-H (2008) Molecular cloning and characterization of a novel cold-active β-1,4-d-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Comp Biochem Physiol B Biochem Mol Biol 151:32–40

  • Sturm M, Schroeder C, Bauer P (2016) SeqPurge: highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinf 17:208

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan M et al (2015) First comprehensive multi-tissue transcriptome of Cherax quadricarinatus (Decapoda: Parastacidae) reveals unexpected diversity of endogenous cellulase. Org Divers Evol 16:185–200

    Article  Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab Birgus latro (Coenobitidae). J Comp Physiol B 174:299–308

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Hägglund P, Stålbrand H, Janson J-C (2002) Endo-β-1,4-mannanases from blue mussel, Mytilus edulis: purification, characterization, and mode of action. J Biotechnol 92:267–277

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahura UA, Rahman MM, Inoue A, Tanaka H, Ojima T (2010) An endo-β-1,4-mannanase, AkMan, from the common sea hare Aplysia kurodai. Comp Biochem Physiol B Biochem Mol Biol 157:137–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Linton.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic Supplementary Material

Table S1

(XLSX 12 kb)

Table S2

(XLSX 429 kb)

Table S3

(DOCX 11 kb)

Figure S1

qPCR-based quantification of selected CAZy transcripts and single copy reference gene, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Mean Cq values were indicates on each barchart and error bars represent standard deviation of three technical replicates. (PNG 50 kb)

High resolutiom image (TIF 134 kb)

ESM 1

(FASTA 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, H.M., Austin, C. & Linton, S. Transcriptome-Guided Identification of Carbohydrate Active Enzymes (CAZy) from the Christmas Island Red Crab, Gecarcoidea natalis and a Vote for the Inclusion of Transcriptome-Derived Crustacean CAZys in Comparative Studies. Mar Biotechnol 20, 654–665 (2018). https://doi.org/10.1007/s10126-018-9836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9836-2

Keywords

Navigation