Skip to main content
Log in

Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh

  • Original Article
  • Published:
Visual Geosciences

Abstract

We propose a new approach to utilize the algorithm of hardware-assisted visibility sorting (HAVS) in the 3D volume rendering of spherical mantle convection simulation results over unstructured grid configurations. We will also share our experience in using three different spherical convection codes and then taking full advantages of the enhanced efficiency of visualization techniques, which are based on the HAVS techniques and related transfer functions. The transfer function is a powerful tool designed specifically for editing and exploring large-scale datasets coming from numerical computation for a given environmental setting, and generates hierarchical data structures, which will be used in the future for fast access of GPU visualization facilities. This method will meet the coming urgent needs of real-time visualization of 3D mantle convection, by avoiding the demands of huge amount of I/O space and intensive network traffic over distributed parallel terascale or petascale architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Callahan S, Ikits M, Comba J, Silva C (2005a) Hardware-assisted visibility ordering for unstructured volume rendering. IEEE Trans Vis Comput Graph 11(3):285–295

    Article  Google Scholar 

  • Callahan S, Comba L, Shirley P, Silva C (2005b) Interactive rendering of large unstructured grids using dynamic level-of-detail. In: Proceedings of IEEE visualization ‘05, pp 199–206

  • Callahan S, Bavoil L, Pascucci V, Silva C (2006) Progressive volume rendering of large unstructured grids. IEEE Trans Vis Comput Graph 12(5)

  • Damon MR, Kameyama M, Knox M, Porter D, Yuen D, Sevre E (2007) Interactive visualization of 3-D mantle convection. Vis Geosci 10

  • Erlebacher C, Yuen DA, Dubuffet F (2001) Current trends and demands in visualization in the geosciences. Vis Geosci 6:59. doi:10.1007/s10069-001-1019-y

    Article  Google Scholar 

  • Fang S, Biddlecome T, Tuceryan M (1998) Image-based transfer function design for data exploration in volume visualization. Proc IEEE Vis 98:319–326

    Google Scholar 

  • Farias R, Mitchell J, Silva CT (2000) ZSWEEP: an efficient and exact projection algorithm for unstructured volume rendering. Proc IEEE Vol Vis Graph Symp 91–99

  • Fornberg BA (1995) A practical guide to pseudospectral methods. Cambridge University Press, Cambridge

  • Fujishiro I, Azuma T, Takeshima Y (1999) Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. Proc IEEE Vis 99:467–470

    Google Scholar 

  • Gable CW, O’Connell RJ, Travis BJ (1991) Convection in three dimensions with surface plates: generation of toroidal flow. J Geophys Res 96:8391–8405

    Article  Google Scholar 

  • Hansen CD, Johnson CR (eds) (2005) The visualization handbook. Elsevier, Amsterdam, 962 p

  • Honda S, Yuen DA, Balachandar S, Reuteler DM (1993) Three dimensional Instabilities of mantle convection with multiple phase transitions. Science 259(5099):1308–1311

    Article  Google Scholar 

  • Jordan KE, Yuen DA, Reuteler DM, Zhang S, Haimes R (1996) Parallel interactive visualization of 3D mantle convection. Comput Sci Eng IEEE 3:29–37

    Article  Google Scholar 

  • King SD, Gable CW, Weinstein SA (1992) Models of convection-driven tectonic plates: a comparison of methods and results. Geophys J Int 109:481–487

    Article  Google Scholar 

  • Kameyama MC (2005a) ACuTEMan: a multigrid-based mantle convection simulation code and its optimization to the Earth Simulator. J Earth Simul 4:2–10

    Google Scholar 

  • Kameyama MC, Yuen DA (2005b) Enhanced heating by post-perovskite phase transition: implications for the thermal and mechanical state in the lower mantle. In: Proceedings from AGU Fall Meeting, MR23B-0062

  • Kameyama M, Kageyama A, Sato T (2005c) Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity. J Comput Phys 206(1):162–181

    Article  Google Scholar 

  • Kameyama MC, Yuen DA (2006) 3-D convection studies on the thermal state of the lower mantle with post perovskite transition. Geophys Res Lett 33. doi:10.1029/2006GL025744

  • McKenzie DP, Roberts JM, Weiss NO (1974) Convection in the Earth’s mantle: towards a numerical solution. J Fluid Mech 62:465–538

    Article  Google Scholar 

  • Moder C, Bunge HP, Igel H, Schuberth B (2007) Visualization in the geosciences with paraview. In: Benger W, Heinzl R, Kapferer W, Schoor W, Tyaki M, Venkataraman S, Weber G (eds) Proceedings of the 4th high-end visualization workshop, Lehmanns Media, Berlin, pp 147–156. ISBN:9783865412164

  • Moresi LN, Solomatov VS (1995) Numerical investigation of 2D convection with extremely large viscosity variation. Phys Fluids 9:2154–2164

    Article  Google Scholar 

  • Pantakar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York

  • Rudolf M, Gerya TV, Yuen DA, De Rosier S (2004) Visualization of multiscale dynamics of hydrous cold plumes at subduction zones. Vis Geosci 9:59–71

    Article  Google Scholar 

  • Shirley P, Tuchman A (1990) A polygonal approximation to direct scalar volume rendering. In: Proceedings of San Diego workshop volume visualization, vol 24, no 5, pp 63–70

  • Schubert G, Yuen DA, Turcotte DL (1975) Role of phase transitions in a dynamic mantle. Geophys J R Astron Soc 42:705–735

    Article  Google Scholar 

  • Silva C, Comba J, Callahan S, Bernardon F (2005) GPU-based volume rendering of unstructured grids. Braz J Theor Appl Comput 12(2):9–29

    Google Scholar 

  • Stegman DR, Moresi L, Turnbull R, Giordani J, Sunter P, Lo A, Quenette S (2008) gLucifer: next generation visualization framework for high performance computational geodynamics. Vis Geosci (in press)

  • Tackley PJ (1998) Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D″. In: Gurnis M (ed) The core–mantle region. AGU, Washington, DC, pp 231–253

    Chapter  Google Scholar 

  • Torrance KE, Turcotte DL (1971) Thermal convection with large viscosity variations. J Fluid Mech 47:113–125

    Article  Google Scholar 

  • Tan E, Gurnis M, Armendariz L, Strand L, Kientz S (2007) CitcomS User Manual Version 3.0.1, 25 p. http://www.geodynamics.org

  • Zhang S, Christensen U (1993) Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophys J Int 114:531–547

    Article  Google Scholar 

  • Zhang S, Yuen DA (1995) The influences of lower mantle viscosity stratification on 3-D spherical-shell mantle convection. Earth Planet Sci Lett 132:157–166

    Article  Google Scholar 

  • Zhang S, Yuen DA (1996) Various influences on plumes and dynamics in time-dependent compressible convection in spherical shell. Phys Earth Planet Inter 94:241–267

    Article  Google Scholar 

  • Zhong S (2006) Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature. J Geophys Res 111:B04409. doi:10.1029/2005JB003972

    Article  Google Scholar 

  • Zhong S, Gurnis M (1994) The role of plates and temperature-dependent viscosity in phase change dynamics. J Geophys Res 99:15903–15917

    Article  Google Scholar 

  • Wang SM, Zhang SX, Yuen DA (2007) Visualization of downwellings in 3-D spherical mantle convection. Phys Earth Planet Inter 163:299–304

    Article  Google Scholar 

  • Williams PL (1992) Visibility-ordering meshed polyhedra. ACM Trans Graph 11(2):103–126

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Yunhai C. Wang and Dr. David Henry Porter from M.S.I. for constructive discussions. We acknowledge that Dr. Masanori C. Kameyama has kindly provided us with his AcuteMan code. We thank Ms. Stephanie Chen for technical assistance. This project is jointly supported by National Basic Research Program of China (2004cb408406) and National Science Foundation of China under grants number (40774049, 40474038). The parallel simulation program is supported by Supercomputing Center of Chinese Academy of Sciences (INF105-SCE-02-12). Dr. David A. Yuen thanked NSF for support in CMG and ITR programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Zhang, H., Yuen, D.A. et al. Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh. Vis Geosci 13, 97–104 (2008). https://doi.org/10.1007/s10069-008-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10069-008-0012-0

Keywords

Navigation