Skip to main content
Log in

Propagation of pressure change through thick clay sequences: an example from Liverpool Plains, NSW, Australia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In-situ hydraulic conductivity and specific storage measurements are derived from an analysis of pore-water pressure changes in a nest of piezometers installed in a 40-m-thick succession of smectitic clay on the Liverpool Plains of northern New South Wales, Australia. The cumulative response to the rainfall events that typically occurs during winter or early spring is propagated through the clay with measurable loss of amplitude and increasing phase lag. Five major rainfall events occurred over the four years of detailed monitoring. The phase lag at the base of the clay varied between 49 and 72 days. Barometric efficiency (BE) measurements for the clay sequence (BE = 0.07) and the underlying confined aquifer (BE = 0.10) were used, with a known porosity of 0.567, to derive specific storage values of 3.7×10−5 and 6.8×10−6 m−1 respectively. Vertical hydraulic conductivity (Kv) of the clay sequence derived from observed amplitude and phase changes, resulted in an average value of 2.8×10−9 m/s. These in-situ-derived values indicate that previous estimates of vertical hydraulic conductivity of the clays, made on core samples, are unrealistically high. The instantaneous response to individual rainfall events transmitted through the clay succession (tidal efficiency of 0.93) is also described.

Résumé

Des mesures in-situ de conductivité hydraulique et d’emmagasinement spécifique sont obtenues à partir de l’analyse de la variation des pressions interstitielles telles que mesurées au droit d’un nid de piézomètres interceptant une épaisseur de 40 m d’argile smectique dans les plaines de Liverpool, région nord du New South Wales, Australie. La réponse cumulative aux évènements pluviométriques qui surviennent typiquement durant l’hiver ou le début du printemps, se propage dans les argiles suite à une diminution d’amplitude (des pressions interstitielles) et à un accroissement du pas de temps.. Cinq évènements pluviométriques sont survenus lors d’un suivi détaillé effectué sur quatre (4) années. Le pas de temps à la base de l’argile a varié de 49 à 72 jours. Les mesures d’efficience barométrique (EB) de l’assemblage argileux (BE = 0.07) et de la nappe aquifère confinée sous-jacente (BE = 1.10) ont été utilisées, avec une porosité connue de 0,567, afin d’obtenir des valeurs d’emmagasinement spécifique de respectivement 3.7×10−5 et 6.6×10−6 m−1. La conductivité hydraulique verticale (Ky) de l’assemblage argileux a été déterminée à partir de la mesure des variations d’amplitudes ainsi que des pas de temps, permettant la détermination d’une valeur moyenne de 2.8×10−9 m/s. Ces valeurs obtenues in-situ montrent que les estimations de conductivité hydraulique verticale des argiles telles qu’obtenues à partir d’échantillons non remaniés sont surestimées. La réponse instantanée à des évènements pluviométriques individuels transmis au travers de la succession d’argile (facteur d’efficacité de marée de 0.93) est également décrite.

Resumen

Se han derivado mediciones in-situ de conductividad hidráulica y almacenamiento específico a partir de un análisis de cambios de presión intersticial en una red de piezómetros instalados en una secuencia gruesa de 40 m de arcilla esmectítica en las Planicies Liverpool del norte de Nueva Gales del Sur, Australia. La respuesta acumulativa de los eventos de lluvia que típicamente ocurren en invierno y principio de primavera se propaga a través de la arcilla mediante pérdida de amplitud y un incremento en retraso de fase. Durante los cuatro años de monitoreo detallado ocurrieron cuatro eventos de lluvia principales. El retraso de fase en la base de la arcilla varió de 49 a 72 días. Las mediciones de eficiencia barométrica (BE) para la secuencia arcillosa (BE = 0.07) y el acuífero confinado subyacente (BE = 0.1) se utilizaron, con una porosidad conocida de 0.567, para derivar valores de almacenamiento específico de 3.7×10−5 y 6.8×10−6 m−1, respectivamente. La conductividad hidráulica vertical (Kv) de la secuencia arcillosa derivada de cambios observados en amplitud y fase dio por resultado un valor promedio de 2.8×10−9 m/s. Estos valores derivados in-situ indican que los estimados previos de conductividad hidráulica vertical de las arcillas, hechos en muestras de núcleo, son muy altos y poco confiables. También se describe la respuesta instantánea de eventos de lluvia individuales transmitidos a través de la secuencia arcillosa (eficiencia de marea de 0.93).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acworth RI (1999) Investigation of Dryland Salinity using the Electrical Image Method. Aust J Soil Res 37:623–36

    Google Scholar 

  • Acworth RI, Beasley R (1998) Investigation of EM31 Anomalies at Yarramanbah/Pump Station Creek on the Liverpool Plains of New South Wales, WRL Res Rep No. 195

  • Bardsley WE, Campbell DI (1994) A new method for measuring near-surface moisture budgets in hydrological systems. J Hydrol 154:245–254

    Article  Google Scholar 

  • Boldt-Leppin BEJ, Hendry MJ (2003) Application of harmonic analysis of water levels to determine vertical hydraulic conductivities in clay-rich aquitards. Ground Water

  • Choi JW, Oscarson DW (1996) Diffusive transport through compacted Na- and Ca- bentonite. J Contam Hydrol 22:189–202

    Article  CAS  Google Scholar 

  • Domenico PA, Schwartz FW (1997) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Trans Am Geophys Union 21:574–586

    Google Scholar 

  • Keller CK, Van der Kamp G, Cherry JA (1989) A multi-scale study of the permeability of a thick clayey till. Water Resour Res 25:11

    Google Scholar 

  • McNeill JD (1986) Geonics EM-39 borehole conductivity meter: theory of operation, Mississauga, Ontario, Canada., Geonics Ltd., Technical Note TN-20, p. 9

  • Mitchell JK (1993) Fundamentals of soil behaviour, 2nd edn. Wiley, New York

    Google Scholar 

  • Moutier M, Shainberg I, Levy GJ (1998) Hydraulic gradient, aging and water quality effects on hydraulic conductivity of a vertisol. Soil Sci Am J 62:1488–1496

    CAS  Google Scholar 

  • Neuzil CD (1986) Groundwater flow in low-permeability environments. Water Resour Res 22:8

    Google Scholar 

  • Neuzil CD (2003) Hydromechanical coupling in geological processes. Hydrogeol J 111:41–83

    Google Scholar 

  • Rowe RK, Quigley RM, Booker JR (1995) Clayey barrier systems for waste disposal facilities. E & FN Spon, London, 390 pp

  • Terzaghi K, Peck R (1948) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Timms W, Acworth RI, Berhane D (2001) Shallow groundwater dynamics in smectite dominated clay on the Liverpool Plains of New South Wales. Aust J Soil Res 39:203–218

    Article  Google Scholar 

  • Timms WA, Acworth RI (2002) Induced leakage due to groundwater pumping and flood irrigation at the Pullaming Agricultural Field Station, Liverpool Plains, Water Research Laboratory Research Report No. 208 available at http://www.wrl.unsw.edu.au/research

  • Quirk JP, Aylmore AG (1971) Domains and quasi-crystalline regions in clay systems. Soil Sci Soc Am J 35:652–654

    Google Scholar 

  • Shaw RJ, Hendry MJ (1998) Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Can Geotech J 35:1041–1052

    Article  Google Scholar 

  • Stuyfzand PJ (1993) Hydrochemistry and hydrology of the coastal dune area of the Western Netherlands. KIWA, Afd. Onderzoek & Advies–I11

  • Van der Kamp G, Gale JE (1983) Theory of earth tide and barometric effects in porous formations with compressible grains. Water Resour Res 19:2

    Google Scholar 

  • Van der Kamp G, Maathuis H (1991) Annual fluctuations of groundwater levels as a result of loading by surface moisture. J Hydrol 127:137–152

    Article  Google Scholar 

  • Van der Kamp G, Schmidt R (1997) Monitoring of total soil moisture on a scale of hectares using groundwater piezometers. Geophys Res Lett 24:6

    Google Scholar 

  • Van der Kamp G (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards—an overview. Hydrogeol J 9:5–16

    Article  Google Scholar 

  • Wiesner T, Acworth RI (1999) Groundwater contamination investigation using CCPTs: Water 99 Joint Congress, 6–8 July, pp. 801–806

    Google Scholar 

Download references

Acknowledgements

The first author is indebted to the early training support of CSIRO Land and Water, particularly Dr Joe Walker and Peter Richardson, who provided additional groundwater level loggers to augment UNSW equipment for an extended monitoring period. The NSW Department of Land and Water Conservation funded installation of the nested piezometer site and ongoing support was given by Dawit Berhane, David Dight and others of the Department’s Gunnedah Research Centre. Roland Thomas provided technical assistance while a summer student at the UNSW Water Research Laboratory. Climate data was supplied by Rick Young (NSW Agriculture). Assistance was provided by Terry Wiesner of Douglas and Partners and Prof Jim Hendry, University of Saskatchewan, Canada, and is acknowledged with thanks. The comments of Dr. Garth Van der Kamp of the National Hydrology Institute, Canada, led to improvements in the manuscript. Dr Chris Neuzil (USGS) and a second reviewer are acknowledged for their constructive comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Acworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timms, W.A., Acworth, R.I. Propagation of pressure change through thick clay sequences: an example from Liverpool Plains, NSW, Australia. Hydrogeol J 13, 858–870 (2005). https://doi.org/10.1007/s10040-005-0436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0436-7

Keywords

Navigation