Skip to main content

Advertisement

Log in

Key Ecological Function Peaks at the Land–Ocean Transition Zone When Vertebrate Scavengers Concentrate on Ocean Beaches

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Ecotones can form hot spots of biodiversity by containing species from multiple ecosystems. Because biodiversity is often linked to ecological function, we posit that rates of key ecological functions are highest at ecotones and decline away from them. Here we test this hypothesis by measuring spatial decays in the function of carrion scavenging on a gradient ranging from ocean beaches upland into abutting coastal dunes. A large field experiment in Eastern Australia, at the ecotone formed by ocean beaches, employed multiple carrion placements and motion-triggered cameras to identify the animals consuming carcasses and the removal rates of necromass. Significantly more carrion was consumed by vertebrate scavengers at the beach interface (50–80% of total necromass removed) and declined significantly with distance (max. 350 m) into the abutting coastal dunes (20–25%). This marked cline was due to the consumption of carrion by both dune-dwelling and beach-dwelling animals at the beach–dune interface and a decline in scavenging activity by both groups farther upland. These spatial effects were consistent between sites, but the lower carrion removal away from the beach became less pronounced as the carcasses putrefied, suggesting that microbial actions can modify carrion suitability for vertebrate scavengers and hence change spatial patterns in ecological function. Our findings provide quantitative support for the widespread notion that ecological transition zones are hot spots of ecological functions and highlight the importance of managing functionally important species at ecotones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Andersson LC, Reynolds JD. 2017. Habitat features mediate selective consumption of salmon by bears. Can J Fish Aquat Sci 75(6):955–63.

    Article  Google Scholar 

  • Araujo MB. 2002. Biodiversity hotspots and zones of ecological transition. Conserv Biol 16(6):1662–3.

    Article  Google Scholar 

  • Baring RJ, Lester RE, Fairweather PG. 2018. Trophic relationships among animals associated with drifting wrack. Mar Freshw Res 69(8):1248.

    Article  Google Scholar 

  • Batary P, Baldi A. 2004. Evidence of an edge effect on avian nest success. Conserv Biol 18(2):389–400.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Hoey AS. 2006. Sleeping functional group drives coral-reef recovery. Curr Biol 16(24):2434–9.

    Article  CAS  PubMed  Google Scholar 

  • Bingham EL, Gilby BL, Olds AD, Weston MA, Connolly RM, Henderson CJ, Maslo B, Peterson CF, Voss CM, Schlacher TA. 2018a. Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia 188(2):583–93.

    Article  PubMed  Google Scholar 

  • Bingham EL, Gilby BL, Olds AD, Weston MA, Connolly RM, Henderson CJ, Maslo B, Peterson CH, Voss CM, Schlacher TA. 2018b. Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia 188:583–93.

    Article  PubMed  Google Scholar 

  • Blandford M, Katouli M, Gilby BL, O’Dea C, Olds A, Schlacher TA. 2019. Not all rotten fish stink: Microbial changes in decaying carcasses determine the potential health risks to animal scavengers. Estuar Coast Shelf Sci 227:106350. https://doi.org/10.1016/j.ecss.2019.106350.

    Article  CAS  Google Scholar 

  • Blandford MI. 2016. Microbial changes during decomposition of fish carcasses on an exposed sandy beach: Possible implications for toxicity and palatability of wave-cast carrion to vertebrate scavengers. BSc (Hons), University of the Sunshine Coast.

  • Bocher P, Robin F, Kojadinovic J, Delaporte P, Rousseau P, Dupuy C, Bustamante P. 2014. Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats. J Sea Res 92:115–24.

    Article  Google Scholar 

  • Borland HP, Schlacher TA, Gilby BL, Connolly RM, Yabsley NA, Olds AD. 2017. Habitat type and beach exposure shape fish assemblages in the surf zones of ocean beaches. Mar Ecol Progress Ser 570:203–11.

    Article  Google Scholar 

  • Brown MB, Schlacher TA, Schoeman DS, Weston MA, Huijbers CM, Olds AD, Connolly RM. 2015. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches. Ecology 96(10):2715–25.

    Article  PubMed  Google Scholar 

  • Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9(4):222–8.

    Article  Google Scholar 

  • Clements FE. 1907. Plant physiology and ecology. New York: Holt.

    Book  Google Scholar 

  • Fortin MJ, Olson RJ, Ferson S, Iverson L, Hunsaker C, Edwards G, Levine D, Butera K, Klemas V. 2000. Issues related to the detection of boundaries. Landsc Ecol 15(5):453–66.

    Article  Google Scholar 

  • Gamfeldt L, Roger F. 2017. Revisiting the biodiversity-ecosystem multifunctionality relationship. Nat Ecol Evolut 1(7):0168.

    Article  Google Scholar 

  • Gaston KJ, Rodrigues ASL, van Rensburg BJ, Koleff P, Chown SL. 2001. Complementary representation and zones of ecological transition. Ecol Lett 4(1):4–9.

    Article  Google Scholar 

  • Gosz JR. 1993. Ecotone hierarchies. Ecol Appl 3(3):369–76.

    Article  PubMed  Google Scholar 

  • Harris RJ, Reed JM. 2002. Behavioral barriers to non-migratory movements of birds. Annales Zoologici Fennici. Finland: Finnish Zoological and Botanical Publishing Board.

    Google Scholar 

  • Hoey AS, Bellwood DR. 2009. Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12(8):1316–28.

    Article  Google Scholar 

  • Hoffmann AA, Blows MW. 1994. Species borders: ecological and evolutionary perspectives. Trends Ecol Evolut 9(6):223–7.

    Article  CAS  Google Scholar 

  • Howard GT, Norton WN, Stroot PG, Bailey KL, Watson EJ. 2012. Association of the genus acinetobacter with the decomposition of a swine carcass and the isolation and characterization of a novel strain of acinetobacter sp P4. Curr Microbiol 64(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  • Huijbers CM, Schlacher TA, McVeigh RR, Schoeman DS, Olds AD, Brown MB, Ekanayake KB, Weston MA, Connolly RM. 2016a. Functional replacement across species pools of vertebrate scavengers separated at a continental scale maintains an ecosystem function. Funct Ecol 30(6):998–1005.

    Article  Google Scholar 

  • Huijbers CM, Schlacher TA, Schoeman DS, Olds AD, Weston MA, Connolly RM. 2016b. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers Distrib 21(1):55–63.

    Article  Google Scholar 

  • Huijbers CM, Schlacher TA, Schoeman DS, Weston MA, Connolly RM. 2013. Urbanisation alters processing of marine carrion on sandy beaches. Landsc Urban Plan 119:1–8.

    Article  Google Scholar 

  • Inger R, Per E, Cox DTC, Gaston KJ. 2016. Key role in ecosystem functioning of scavengers reliant on a single common species. Sci Rep 6:29641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–13.

    Article  Google Scholar 

  • Lidicker WZ. 1999. Responses of mammals to habitat edges: an overview. Landsc Ecol 14(4):333–43.

    Article  Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A. 2003a. Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci USA 100(22):12765–70.

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Mouquet N, Holt RD. 2003b. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6(8):673–9.

    Article  Google Scholar 

  • Maxwell PS, Pitt KA, Olds AD, Rissik D, Connolly RM. 2015. Identifying habitats at risk: simple models can reveal complex ecosystem dynamics. Ecol Appl 25(2):573–87.

    Article  PubMed  Google Scholar 

  • McClain CR, Schlacher TA. 2015. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar Ecol 36(4):849–72.

    Article  Google Scholar 

  • Meager JJ, Schlacher TA, Nielsen T. 2012. Humans alter habitat selection of birds on ocean-exposed sandy beaches. Divers Distrib 18(3):294–306.

    Article  Google Scholar 

  • Mellbrand K, Lavery PS, Hyndes G, Hamback PA. 2011. Linking land and sea: different pathways for marine subsidies. Ecosystems 14:732–44.

    Article  CAS  Google Scholar 

  • Micheli F, Halpern BS. 2005. Low functional redundancy in coastal marine assemblages. Ecol Lett 8(4):391–400.

    Article  Google Scholar 

  • Olds AD, Frohloff BA, Gilby BL, Connolly RM, Yabsley NA, Maxwell PS, Henderson CJ, Schlacher TA. 2018a. Urbanisation supplements ecosystem functioning in disturbed estuaries. Ecography 41(12):2104–13.

    Article  Google Scholar 

  • Olds AD, Frohloff BA, Gilby BL, Connolly RM, Yabsley NA, Maxwell PS, Schlacher TA. 2018b. Urbanisation supplements ecosystem functioning in disturbed estuaries. Ecography 41:2104–13.

    Article  Google Scholar 

  • Olds AD, Pitt KA, Maxwell PS, Connolly RM. 2012. Synergistic effects of reserves and connectivity on ecological resilience. J Appl Ecol 49(6):1195–203.

    Article  Google Scholar 

  • Olds AD, Vargas-Fonseca E, Connolly RM, Gilby BL, Huijbers CM, Hyndes G, Layman CA, Whitfield AK, Schlacher TA. 2017. The ecology of fish in the surf zones of ocean beaches: a global review. Fish Fish 19(1):78–89.

    Article  Google Scholar 

  • Oliveira DL, Soares TF, Vasconcelos SD. 2016. Effect of bait decomposition on the attractiveness to species of Diptera of veterinary and forensic importance in a rainforest fragment in Brazil. Parasitol Res 115(1):449–55.

    Article  PubMed  Google Scholar 

  • Peyras M, Vespa NI, Bellocq MI, Zurita GA. 2013. Quantifying edge effects: the role of habitat contrast and species specialization. J Insect Conserv 17(4):807–20.

    Article  Google Scholar 

  • Reid WV. 1998. Biodiversity hotspots. Trends Ecol Evolut 13(7):275–80.

    Article  CAS  Google Scholar 

  • Ries L, Fletcher RJ Jr, Battin J, Sisk TD. 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Ann Rev Ecol Evolut Syst 35:491–522.

    Article  Google Scholar 

  • Ripple WJ, Beschta RL. 2007. Restoring Yellowstone’s aspen with wolves. Biol Conserv 138(3–4):514–19.

    Article  Google Scholar 

  • Risser PG. 1995a. Biodiversity and ecosystem function. Conserv Biol 9(4):742–6.

    Article  Google Scholar 

  • Risser PG. 1995b. The status of science examining ecotones. Bioscience 45(5):318–25.

    Article  Google Scholar 

  • Schlacher TA, Hutton BM, Gilby BL, Porch N, Maguire GS, Maslo B, Connolly RM, Olds AD, Weston MA. 2017. Algal subsidies enhance invertebrate prey for threatened shorebirds: A novel conservation tool on ocean beaches? Estuar Coast Shelf Sci 191:28–38.

    Article  Google Scholar 

  • Schlacher TA, Strydom S, Connolly RM. 2013. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecol 48:7–12.

    Article  Google Scholar 

  • Schlacher TA, Weston MA, Lynn D, Schoeman DS, Huijbers CM, Olds AD, Masters S, Connolly RM. 2015a. Conservation gone to the dogs: when canids rule the beach in small coastal reserves. Biodivers Conserv 24:493–509.

    Article  Google Scholar 

  • Schlacher TA, Weston MA, Schoeman DS, Olds AD, Huijbers CM, Connolly RM. 2015b. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar Coast Shelf Sci 157:1–6.

    Article  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Ann Rev Ecol Evolut Syst 40(1):415–36.

    Article  Google Scholar 

  • Sheaves M, Brookes J, Coles R, Freckelton M, Groves P, Johnston R, Winberg P. 2014. Repair and revitalisation of Australia’s tropical estuaries and coastal wetlands: opportunities and constraints for the reinstatement of lost function and productivity. Mar Policy 47:23–38.

    Article  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW. 1997. A role for ecotones in generating rainforest biodiversity. Science 276(5320):1855–7.

    Article  CAS  Google Scholar 

  • Somaweera R, Rhind D, Reynolds S, Eisemberg C, Sonneman T, Woods D. 2018. Observations of mammalian feeding by Australian freshwater crocodiles (Crocodylus johnstoni) in the Kimberley region of Western Australia. Rec West Aust Museum 33(1):103.

    Article  Google Scholar 

  • Spector S, Ayzama S. 2003. Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35(3):394–404.

    Google Scholar 

  • Van Rensburg BJ, Levin N, Kark S. 2009. Spatial congruence between ecotones and range-restricted species: implications for conservation biogeography at the sub-continental scale. Divers Distrib 15(3):379–89.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding for this project from SK House, the SeaWorld Research and Rescue Foundation, and the CRN-Water Science. A jolly band of students endured some particularly ‘charming’ mullet carcass smells and trekked with alacrity and determination through the dune vegetation; a very big ‘Thank You’ to Cassandra Duncan, Sarah Thackwray, Ellen Bingham, and Hayden Borland for their help and hard work in the field deploying copious volumes of odoriferous mullets in challenging terrains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Schlacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlacher, T.A., Gilby, B.L., Olds, A.D. et al. Key Ecological Function Peaks at the Land–Ocean Transition Zone When Vertebrate Scavengers Concentrate on Ocean Beaches. Ecosystems 23, 906–916 (2020). https://doi.org/10.1007/s10021-019-00445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00445-y

Keywords

Navigation