Skip to main content
Log in

Protein sensors based on reversible π–π stacking on basal plane HOPG electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the modification of basal planes of highly oriented pyrolytic graphite (HOPG) electrodes with pyrene-functionalised biotin (PFB), via π–π stacking, and ethylene glycol antifouling molecules, via covalent bonding, for detection of streptavidin is presented. Biotin was first conjugated to the pyrene moieties by an esterification reaction in order to enable the self-assembly of biotin onto the surface of HOPG via non-covalent π–π stacking. The as-prepared biotinylated electrode was used as the sensing probe to analyze the concentration of streptavidin via the diminution in pyrene electrochemistry resulted from the desorption of pyrene from the surface that is mediated by the biotin–streptavidin recognition. X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), square wave voltammetry (SWV) measurements, and electrochemical impedance spectroscopy (EIS) were used to characterize the amount of surface bound pyrene modified biotin and the concentration of streptavidin. This simple strategy can be applied to the detection of other biomolecules via bio-recognition and the reversible π–π stacking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22(25):12435–12452

    Article  CAS  Google Scholar 

  2. Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40(7):3995–4048

    Article  CAS  Google Scholar 

  3. Downard AJ (2000) Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 12(14):1085–1096

    Article  CAS  Google Scholar 

  4. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138

    Article  CAS  Google Scholar 

  5. Gooding JJ (2008) Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes. Electroanalysis 20(6):573–582

    Article  CAS  Google Scholar 

  6. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2008) Sterically hindered diazonium salts for the grafting of a monolayer on metals. J Am Chem Soc 130(27):8576–8577

    Article  CAS  Google Scholar 

  7. Leroux YR, Fei H, Noël J-M, Roux C, Hapiot P (2010) Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer. J Am Chem Soc 132(40):14039–14041

    Article  CAS  Google Scholar 

  8. Fairman C, Chockalingam M, Liu G, Soeriyadi AH, Gooding JJ (2013) Light induced organic monolayer modification of iodinated carbon electrodes. Langmuir 3(1):332–339

    Google Scholar 

  9. Debela AM, Ortiz M, Beni V, O’Sullivan CK (2014) Facile electrochemical hydrogenation and chlorination of glassy carbon to produce highly reactive and uniform surfaces for stable anchoring of thiolated molecules. Chemistry 20(25):7646–7654

    Article  CAS  Google Scholar 

  10. Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2(13):5800–5805

    Article  CAS  Google Scholar 

  11. Anne A, Bahri MA, Chovin A, Demaille C, Taofifenua C (2014) Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly (ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy. Phys Chem Chem Phys 16(10):4642–4652

    Article  CAS  Google Scholar 

  12. Herrera SE, Tesio AY, Clarenc R, Calvo EJ (2014) AFM study of oxygen reduction products on HOPG in the LiPF 6–DMSO electrolyte. Phys Chem Chem Phys 16(21):9925–9929

    Article  CAS  Google Scholar 

  13. Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2(4):285–288

    Article  CAS  Google Scholar 

  14. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  15. Lo MY, Zhen C, Lauters M, Jabbour GE, Sellinger A (2007) Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J Am Chem Soc 129(18):5808–5809

    Article  CAS  Google Scholar 

  16. Liu J, Wang R, Cui L, Tang J, Liu Z, Kong Q, Yang W, Gooding JJ (2012) Using molecular level modification to tune the conductivity of graphene papers. J Phys Chem C 116(33):17939–17946

    Article  CAS  Google Scholar 

  17. Zhang J, Qiu J, Liu J (2014) Electrical conductivity of graphene/polymer nanocomposites. Rev Adv Sci Eng 3(1):48–65

    Article  Google Scholar 

  18. Cao M, Fu A, Wang Z, Liu J, Kong N, Zong X, Liu H, Gooding JJ (2014) Electrochemical and theoretical study of π–π stacking interactions between graphitic surfaces and pyrene derivatives. J Phys Chem C 118(5):2650–2659

    Article  CAS  Google Scholar 

  19. Liu J, Paddon-Row MN, Gooding JJ (2006) Surface reconstitution of glucose oxidase onto a norbornylogous bridge self-assembled monolayer. Chem Phys 324(1):226–235

    Article  CAS  Google Scholar 

  20. Avci C, Sheikh S, Blaszykowski C, Thompson M (2013) Critical role of surface hydration on the dynamics of serum adsorption studied with monoethylene glycol adlayers on gold. Chem Commun 49(5):466–468

    Article  CAS  Google Scholar 

  21. Liu G, Iyengar SG, Gooding JJ (2013) An amperometric immunosensor based on a gold nanoparticle‐diazonium salt modified sensing interface for the detection of HbA1c in human blood. Electroanalysis 25(4):881–887

    Article  CAS  Google Scholar 

  22. Jhaveri SD, Mauro JM, Goldston HM, Schauer CL, Tender LM, Trammell SA (2003) A reagentless electrochemical biosensor based on a protein scaffold. Chem Commun 3:338–339

    Article  Google Scholar 

  23. Yan J, Tender LM, Hampton PD, López GP (2001) Direct electrochemical transduction of biorecognition at viologen-containing monolayer surfaces. J Phys Chem B 105(37):8905–8910

    Article  CAS  Google Scholar 

  24. Mahmoud KA, Kraatz HB (2007) A bioorganometallic approach for the electrochemical detection of proteins: a study on the interaction of ferrocene–peptide conjugates with papain in solution and on Au surfaces. Chem-Eur J 13(20):5885–5895

    Article  CAS  Google Scholar 

  25. Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. Langmuir 13(25):6805–6813

    Article  CAS  Google Scholar 

  26. Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 26(12):10068–10075

    Article  CAS  Google Scholar 

  27. Kong N, Liu J, Kong Q, Wang R, Barrow CJ, Yang W (2013) Graphene modified gold electrode via π–π stacking interaction for analysis of Cu2+ and Pb2+. Sens Actuators B 178:426–433

    Article  CAS  Google Scholar 

  28. Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131(4):1336–1337

    Article  CAS  Google Scholar 

  29. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2005) Time-of-flight secondary ion mass spectroscopy characterization of the covalent bonding between a carbon surface and aryl groups. Langmuir 21(1):280–286

    Article  CAS  Google Scholar 

  30. Adenier A, Cabet-Deliry E, Chaussé A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C (2005) Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction. Chem Mater 17(3):491–501

    Article  CAS  Google Scholar 

  31. Liu G, Paddon-Row MN, Gooding JJ (2008) Protein modulation of electrochemical signals: application to immunobiosensing. Chem Commun 33:3870–3872

    Article  Google Scholar 

  32. Dominska M, Jackowska K, Krysinski P, Blanchard G (2005) Probing interfacial organization in surface monolayers using tethered pyrene. J Phys Chem B 109(33):15812–15821

    Article  CAS  Google Scholar 

  33. Ding L, Dominska M, Fang Y, Blanchard G (2008) Fluorescence and electrochemistry studies of pyrene-functionalized surface adlayers to probe the microenvironment formed by cholesterol. Electrochim Acta 53(23):6704–6713

    Article  CAS  Google Scholar 

  34. Guo LH, Facci JS, Mclendon G (1995) Distance dependence of electron-transfer rates in bilayers of a ferrocene Langmuir-Blodgett monolayer and a self-assembled monolayer on gold. J Phys Chem 99(21):8458–8461

    Article  CAS  Google Scholar 

  35. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 1:38–46

    Article  Google Scholar 

  36. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355

    Article  CAS  Google Scholar 

  37. Yu SS, Tan ES, Jane RT, Downard AJ (2007) An electrochemical and XPS study of reduction of nitrophenyl films covalently grafted to planar carbon surfaces. Langmuir 23(22):11074–11082

    Article  CAS  Google Scholar 

  38. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509

    Article  CAS  Google Scholar 

  39. Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5(5):1098–1115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.L. acknowledges the Natural Science Foundation of China (51173087), Natural Science Foundation of Shandong (ZR2011EMM001), and Taishan Scholars Program for financial support. J.J.G. thanks the Australian Research Council’s Discovery Projects Funding Scheme (DP1094564) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Justin Gooding or Jingquan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, N., Gooding, J.J. & Liu, J. Protein sensors based on reversible π–π stacking on basal plane HOPG electrodes. J Solid State Electrochem 18, 3379–3386 (2014). https://doi.org/10.1007/s10008-014-2606-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2606-9

Keywords

Navigation