Skip to main content
Log in

Curvature effect in the longitudinal unzipping carbon nanotubes

A DFT study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are performed to analyze curvature effects in the oxidative longitudinal unzipping of carbon nanotubes (CNTs) of different diameters. The reactions considered involve the adsorption of permanganate, followed by the oxidation of the nanotube, which results in dione and hole formation. The study was performed with armchair CNTs of different diameters and with corrugated graphene layers, which emulate the curvature of CNT of larger radii, with the finding that the curvature and the pyramidalization angle of the these structures strongly affects the stability of the intermediate dione structure formed during the unzipping process. Permanganate adsorption energies increase for more curved surfaces promoting the oxidation reaction in surfaces of small radius, making this reaction spontaneous for small radius. The second permanganate adsorbs on the parallel carbon–carbon bond to first diona formation resulting the longitudinal unzipping of the CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Luque GL, Rojas MI, Rivas GA, Leiva EPM (2010) The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces: a density functional theory study. Electro Acta 56:523–530

    Article  CAS  Google Scholar 

  3. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelec 26(12):4637–4648

    Article  CAS  Google Scholar 

  4. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  5. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402

    Article  CAS  Google Scholar 

  6. Rojas MI, Leiva EPM (2007) Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates. Phys Rev B 76(15):155415–15523

    Article  Google Scholar 

  7. Sigal A, Rojas MI, Leiva EPM (2011) Interferents for hydrogen storage on graphene sheet decorated with nickel: a DFT study. Inter J Hydrog Energy 36(5):3537–3546

    Article  CAS  Google Scholar 

  8. Sigal A, Rojas MI, Leiva EPM (2011) Is hydrogen storage possible in metal-doped graphite 2D systems in conditions found on earth? Phys Rev Lett 107(15):158701–158705

    Article  CAS  Google Scholar 

  9. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902

    Article  CAS  Google Scholar 

  10. Flynn GW (2011) Perspective: the dawning of the age of graphene. J Chem Phys 135(5):050901–050909

    Article  Google Scholar 

  11. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976

    Article  CAS  Google Scholar 

  12. Sridhar V, Jeon J, Oh I (2011) Microwave extraction of graphene from carbon fibers. Carbon 49(1):222–226

    Article  CAS  Google Scholar 

  13. Grayfer ED, Makotchenko VG, Nazarov AS, Kim SJ, Fedorov VE (2011) Graphene: chemical approaches to the synthesis and modification. Russ Chem Rev 80(8):751–770

    Article  CAS  Google Scholar 

  14. Cho S, Kikuchi K, Kawasaki A (2011) Radial followed by longitudinal unzipping of multiwalled carbon nanotubes. Carbon 49(12):3865–3872

    Article  CAS  Google Scholar 

  15. Cataldo F, Compagnini G, Patané C, Ursini O, Angelini G, Ribic PR, Cricenti A, Palleschi G, Valentini F (2010) Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 48(9):2596–2602

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  17. Castro Neto AH, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81(1):109–162

    Article  CAS  Google Scholar 

  18. Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jap J App Phys 50:070101–070117

    Article  Google Scholar 

  19. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  20. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069

    Article  CAS  Google Scholar 

  21. Ramesha GK, Sampath S (2007) Exfoliated graphite oxide modified electrode for the selective determination of picomolar concentration of lead. Electroanalytical 19(23):2472–2478

    Article  CAS  Google Scholar 

  22. Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman BD (2010) Enhanced electrochemical lithium storage by graphene nanoribbons. J Am Chem Soc 132:12556–12558

    Article  CAS  Google Scholar 

  23. Zhang H, Zhao M, He T, Zhang X, Wang Z, Xi Z, Yan S, Xia Y, Mei L (2010) Orientation-selective unzipping of carbon nanotubes. Phys Chem Chem Phys 12(41):13674–13680

    Article  CAS  Google Scholar 

  24. Rangel NL, Sotelo JC, Seminario JM (2009) Mechanism of carbon nanotubes unzipping into graphene ribbons. J Chem Phys 131(3):31105–31109

    Article  Google Scholar 

  25. Titantah JT, Jorissen K, Lamoen D (2004) Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: core–hole, curvature, and momentum-transfer orientation effects. Phys Rev B 69:125406–125411

    Article  Google Scholar 

  26. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53(16):R10441–R10444

    Article  Google Scholar 

  27. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  29. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993–2006

    Article  CAS  Google Scholar 

  30. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48(20):1425–1428

    Article  CAS  Google Scholar 

  31. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  32. Szabo A, Ostlund NS (1989) Modern quantum chemistry. Graw-Hill, New York

    Google Scholar 

  33. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45(21):12592–12595

    Article  Google Scholar 

  34. Tibbets GG (1984) Why are carbon filaments tubular? J Cryst Growth 66(3):632–638

    Article  Google Scholar 

  35. Gülseren O, Yildirim T, Ciraci S (2002) Systematic ab initio study of curvature effects in carbon nanotubes. Phys Rev B 65(15):153405–153409

    Article  Google Scholar 

  36. Sánchez-Portal D, Artacho E, Soler J, Rubio A, Ordejón P (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59(19):12678–12688

    Article  Google Scholar 

  37. Haddon RC (1993) Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 261:1545–1550

    Article  CAS  Google Scholar 

  38. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  Google Scholar 

  39. http://www.carbonsolution.com/Pyramidalization.html

  40. Dinadayalane TC, Leszczynski J (2007) Towars nanomaterials: structural, energetic and reactivity aspects of single-walled carbon nanotubes. In: Balbuena P, Seminario JM (eds) Nanomaterials: design and simulation, 1st edn. Elsevier, Italy, pp 167–201

    Chapter  Google Scholar 

  41. Haddon RC (1986) Hybridization and the orientation and alignment of.pi.-orbitals in nonplanar conjugated organic molecules:pi.-orbital axis vector analysis (POAV2). J Am Chem Soc 108(11):2837–2842

    Article  CAS  Google Scholar 

  42. Haddon RC (2001) Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the σ bond angles. J Phys Chem B 105:4164–4165

    Article  CAS  Google Scholar 

  43. Sun CH, Finnerty JJ, Lu GQ, Cheng HM (2005) Stability of supershort single-walled carbon nanotubes. J Phys Chem B 109:12406–12409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PIP 11420090100066 CONICET, PICT 2010-1824, PME 2006-1581, SECyT UNC, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, G.L., Rojas, M.I. & Leiva, E.P.M. Curvature effect in the longitudinal unzipping carbon nanotubes. J Solid State Electrochem 17, 1189–1200 (2013). https://doi.org/10.1007/s10008-012-1992-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1992-0

Keywords

Navigation