Skip to main content
Log in

Arene activation by a nonheme iron(III)–hydroperoxo complex: pathways leading to phenol and ketone products

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron(III)–hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)–hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)–hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)–hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)–hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)–hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)–hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)–oxo complexes will react with arenes to form phenols instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cpd 0:

Compound 0

Cpd I:

Compound I

DFT:

Density functional theory

KIE:

Kinetic isotope effect

L 25 :

N-Methyl-N,N′,N′-tris(2-pyridyl-methyl)ethane-1,2-diamine

N4Py:

N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine

P450:

Cytochrome P450

References

  1. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888. doi:10.1021/cr9500500

    Article  CAS  PubMed  Google Scholar 

  2. Groves JT (2003) Proc Natl Acad Sci 100:3569–3574. doi:10.1073/pnas.0830019100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ortiz de Montellano PR (ed) (2004) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

  4. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277. doi:10.1021/cr0307143

    Article  CAS  PubMed  Google Scholar 

  5. Kadish KM, Smith KM, Guilard R (eds) (2010) Handbook of porphyrin science. World Scientific Publishing Co., New Jersey

  6. Ortiz de Montellano PR (2010) Chem Rev 110:932–948. doi:10.1021/cr9002193

  7. Grogan G (2011) Curr Opin Chem Biol 15:241–248. doi:10.1016/j.cbpa.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  8. Poulos TL (2014) Chem Rev 114:3919–3962. doi:10.1021/cr400415k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980. doi:10.1021/cr020443g

    Article  CAS  PubMed  Google Scholar 

  10. Balding PR, Porro CS, McLean KJ, Sutcliffe MJ, Maréchal J-D, Munro AW, de Visser SP (2008) J Phys Chem A 112:12911–12918. doi:10.1021/jp802087w

    Article  CAS  PubMed  Google Scholar 

  11. Davydov R, Razeghifard R, Im S-C, Waskell L, Hoffman BM (2008) Biochemistry 47:9661–9666. doi:10.1021/bi800926x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makris TM, von Koenig K, Schlichting I, Sligar SG (2007) Biochemistry 46:14129–14140. doi:10.1021/bi7013695

    Article  CAS  PubMed  Google Scholar 

  13. Rittle J, Green MT (2010) Science 330:933–937. doi:10.1126/science.1193478

    Article  CAS  PubMed  Google Scholar 

  14. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) J Am Chem Soc 124:2806–2817. doi:10.1021/ja0171963

    Article  CAS  PubMed  Google Scholar 

  15. de Visser SP, Valentine JS, Nam W (2010) Angew Chem Int Ed 49:2099–2101. doi:10.1002/anie.200906736

    Article  Google Scholar 

  16. Fertinger C, Hessenauer-Ilicheva N, Franke A, van Eldik R (2009) Chem Eur J 15:13435–13440. doi:10.1002/chem.200901804

    Article  CAS  PubMed  Google Scholar 

  17. Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2011) Chem Commun 47:11044–11046. doi:10.1039/c1cc13775a

    Article  CAS  Google Scholar 

  18. Kim YM, Cho K-B, Cho J, Wang B, Li C, Shaik S, Nam W (2013) J Am Chem Soc 135:8838–8841. doi:10.1021/ja404152q

    Article  CAS  PubMed  Google Scholar 

  19. Vardhaman AK, Barman P, Kumar S, Sastri CV, Kumar D, de Visser SP (2013) Chem Commun 49:10926–10928. doi:10.1039/c3cc46792a

    Article  CAS  Google Scholar 

  20. Thibon A, Jollet V, Ribal C, Sénéchal-David K, Billon L, Sorokin AB, Banse F (2012) Chem Eur J 18:2715–2724. doi:10.1002/chem.201102252

    Article  CAS  PubMed  Google Scholar 

  21. Balland V, Mathieu D, Pons YMN, Bartoli JF, Banse F, Battioni P, Girerd J-J, Mansuy D (2004) J Mol Catal A 215:81–87. doi:10.1016/j.molcata.2004.01.015

    Article  CAS  Google Scholar 

  22. Thibon A, Bartoli J-F, Guillot R, Sainton J, Martinho M, Mansuy D, Banse F (2008) J Mol Catal A 287:115–120. doi:10.1016/j.molcata.2008.03.006

    Article  CAS  Google Scholar 

  23. Kudrik EV, Sorokin AB (2008) Chem Eur J 14:7123–7126. doi:10.1002/chem.200800504

    CAS  PubMed  Google Scholar 

  24. Rietjens IMCM, Soffers AEMF, Veeger C, Vervoort J (1993) Biochemistry 32:4801–4812. doi:10.1021/bi00069a015

    Article  CAS  PubMed  Google Scholar 

  25. de Visser SP, Shaik S (2003) J Am Chem Soc 125:7413–7424. doi:10.1021/ja034142f

    Article  PubMed  Google Scholar 

  26. de Visser SP (2006) Chem Eur J 12:8168–8177. doi:10.1002/chem.200600376

    Article  PubMed  Google Scholar 

  27. Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP (2015) Chem Eur J 21:1221–1236. doi:10.1002/chem.201404918

    Article  CAS  PubMed  Google Scholar 

  28. Frisch MJ (2013) Gaussian-09, revision C.02. Gaussian Inc, Wallingford

  29. Vardhaman AK, Barman P, Kumar S, Sastri CV, Kumar D, de Visser SP (2013) Angew Chem Int Ed 52:12288–12292. doi:10.1002/anie.201305370

    Article  CAS  Google Scholar 

  30. Quesne MG, Latifi R, Gonzalez-Ovalle LE, Kumar D, de Visser SP (2014) Chem Eur J 20:435–446. doi:10.1002/chem.201303282

    Article  CAS  PubMed  Google Scholar 

  31. Kumar S, Faponle AS, Barman P, Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2014) J Am Chem Soc 136:17102–17115. doi:10.1021/ja508403w

    Article  CAS  PubMed  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  34. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  35. de Visser SP (2010) J Am Chem Soc 132:1087–1097. doi:10.1021/ja908340j

    Article  PubMed  Google Scholar 

  36. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Int J Quantum Chem 113:2110–2142. doi:10.1002/qua.24481

    Article  CAS  Google Scholar 

  37. de Visser SP, Quesne MG, Martin B, Comba P, Ryde U (2014) Chem Commun 50:262–282. doi:10.1039/c3cc47148a

    Article  Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  39. Perdew JP (1986) Phys Rev B 33:8822–8824. doi:10.1103/PhysRevB.33.8822

    Article  Google Scholar 

  40. Zhao Y, Truhlar DG (2005) Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104. doi:10.1063/1.3382344

    Article  PubMed  Google Scholar 

  42. de Visser SP, Tahsini L, Nam W (2009) Chem Eur J 15:5577–5587. doi:10.1002/chem.200802234

    Article  PubMed  Google Scholar 

  43. Heyes D, Sakuma M, de Visser SP, Scrutton NS (2009) J Biol Chem 284:3762–3767. doi:10.1074/jbc.M808548200

    Article  CAS  PubMed  Google Scholar 

  44. Kumar D, Sastry GN, de Visser SP (2011) J Phys Chem B 116:718–730. doi:10.1021/jp2113522

    Article  PubMed  Google Scholar 

  45. Martinho M, Dorlet P, Rivière E, Thibon A, Ribal C, Banse F, Girerd J-J (2008) Chem Eur J 14:3182–3188. doi:10.1002/chem.200701592

    Article  CAS  PubMed  Google Scholar 

  46. Simaan AJ, Banse F, Girerd J-J, Wieghardt K, Bill E (2001) Inorg Chem 40:6538–6540. doi:10.1021/ic010635e

    Article  CAS  PubMed  Google Scholar 

  47. Kamachi T, Shiota Y, Ohta T, Yoshizawa K (2003) Bull Chem Biol Jpn 76:721–732. doi:10.1246/bcsj.76.721

    Article  CAS  Google Scholar 

  48. İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V, Ahsen V, Dumoulin F, Sorokin AB, de Visser SP (2015) Chem Sci 6:5063–5075. doi:10.1039/c5sc01811k

    Article  Google Scholar 

  49. Latifi R, Bagherzadeh M, de Visser SP (2009) Chem Eur J 15:6651–6662. doi:10.1002/chem.200900211

    Article  CAS  PubMed  Google Scholar 

  50. Pratter SM, Konstantinovics C, DiGiuro CLM, Leitner E, Kumar D, de Visser SP, Grogan G, Straganz GD (2013) Angew Chem Int Ed 52:9677–9681. doi:10.1002/anie201304633

    Article  CAS  Google Scholar 

  51. Ji L, Faponle AS, Quesne MG, Sainna MA, Zhang J, Franke A, Kumar D, van Eldik R, Liu W, de Visser SP (2015) Chem Eur J 21:9083–9092. doi:10.1002/chem.201500329

    Article  CAS  PubMed  Google Scholar 

  52. Kumar D, Karamzadeh B, Sastry GN, de Visser SP (2010) J Am Chem Soc 132:7656–7667. doi:10.1021/ja9106176

    Article  CAS  PubMed  Google Scholar 

  53. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218. doi:10.1021/ja00544a007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. S. F. thanks the Tertiary Education Trust Fund for a studentship. S. P. d. V. thanks the National Service of Computational Chemistry Software UK for providing computational resource and CPU time. The EU-COST Networks for Bioinorganic Reaction Mechanisms (CM1003) and Explicit Control Over Spin states in Technology and Biochemistry (ECOSTBio, CM1305) are acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Banse or Sam P. de Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2016_1354_MOESM1_ESM.pdf

Supplementary material 1 (PDF 489 kb) Tables with absolute and relative energies and group spin densities and charges as well as Cartesian coordinates of all optimized geometries and intrinsic reaction coordinate scans is available

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faponle, A.S., Banse, F. & de Visser, S.P. Arene activation by a nonheme iron(III)–hydroperoxo complex: pathways leading to phenol and ketone products. J Biol Inorg Chem 21, 453–462 (2016). https://doi.org/10.1007/s00775-016-1354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1354-y

Keywords

Navigation