Skip to main content
Log in

Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14–51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Turner JA (1999) Science 285:687–689

    Article  CAS  PubMed  Google Scholar 

  2. Bockris JOM (2013) Int J Hydrogen Energy 38:2579–2588

    Article  CAS  Google Scholar 

  3. Matsumoto T, Kim K, Nakai H, Hibino T, Ogo S (2013) Chem Cat Chem 5:1368–1373

    CAS  Google Scholar 

  4. Yang JY, Bullock M, DuBois MR, DuBois DL (2011) MRS Bull 36:39–47

    Article  CAS  Google Scholar 

  5. Penner SS (2006) Energy 31:33–43

    Article  CAS  Google Scholar 

  6. Cammack R, Frey M, Robson R (2001) Hydrogen as a fuel: learning from nature. Taylor Francis, Beijing

    Book  Google Scholar 

  7. Lubitz W, Ogata H, Ruediger O, Reijerse E (2014) Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  8. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Structure 7:549–556

    Article  CAS  PubMed  Google Scholar 

  10. De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Chem Rev 107:4304–4330

    Article  CAS  PubMed  Google Scholar 

  11. Lubitz W, Reijerse E, van Gastel M (2007) Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  12. Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  13. Tard C, Pickett CJ (2009) Chem Rev 109:2245–2274

    Article  CAS  PubMed  Google Scholar 

  14. Bakhmutov VI (2005) Eur J Inorg Chem 2005:245-255

    Article  Google Scholar 

  15. Fan H-J, Hall MB (2001) J Biol Inorg Chem 6:467–473

    Article  CAS  PubMed  Google Scholar 

  16. Bruschi M, Zampella G, Fantucci P, De Gioia L (2005) Coord Chem Rev 249:1620–1640

    Article  CAS  Google Scholar 

  17. Siegbahn PEM, Tye JW, Hall MB (2007) Chem Rev 107:4414–4435

    Article  CAS  PubMed  Google Scholar 

  18. Kampa M, Lubitz W, van Gastel M, Neese F (2012) J Biol Inorg Chem 17:1269–1281

    Article  CAS  PubMed  Google Scholar 

  19. Kraemer T, Kamp M, Lubitz W, van Gastel M, Neese F (2013) Chem Bio Chem 14:1898–1905

    Article  CAS  Google Scholar 

  20. Bruschi M, Tiberti M, Guerra A, De Gioia L (2014) J Am Chem Soc 136:1803–1814

    Article  CAS  PubMed  Google Scholar 

  21. Pandelia M-E, Ogata H, Lubitz W (2010) Chem Phys Chem 11:1127–1140

    CAS  PubMed  Google Scholar 

  22. Fichtner C, van Gastel M, Lubitz W (2003) Phys Chem Chem Phys 5:5507–5513

    Article  CAS  Google Scholar 

  23. Medina M, Hatchikian EC, Cammack R (1996) Biochim Biophys Acta 1275:227–236

    Article  Google Scholar 

  24. Whitehead JP, Gurbiel RJ, Bagyinka C, Hoffman BM, Maroney MJ (1993) J Am Chem Soc 115:5629–5635

    Article  CAS  Google Scholar 

  25. van der Zwaan JW, Albracht SPJ, Fontijn RD, Slater EC (1985) FEBS Lett 179:271–277

    Article  PubMed  Google Scholar 

  26. Hidalgo R, Ash PA, Healy AJ, Vincent KA (2015) Angewandte Chemie Int Ed 54:7110–7113

    Article  CAS  Google Scholar 

  27. Murphy BJ, Hidalgo R, Roessler MM, Evans RM, Ash PA, Myers WK, Vincent KA, Armstrong FA (2015) J Am Chem Soc 137:8484–8489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavlov M, Siegbahn PEM, Blomberg MRA, Crabtree RH (1998) J Am Chem Soc 120:548–555

    Article  CAS  Google Scholar 

  29. Nilsson Lill SO, Siegbahn PEM (2009) Biochemistry 48:1056–1066

    Article  CAS  Google Scholar 

  30. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  31. Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) J Biol Inorg Chem 6:63–81

    Article  CAS  PubMed  Google Scholar 

  32. Volbeda A, Fontecilla-Camps JC (2005) Coord Chem Rev 249:1609–1619

    Article  CAS  Google Scholar 

  33. Galvan IF, Volbeda A, Fontecilla-Camps JC, Field MJ (2008) Proteins 73:95–203

    Google Scholar 

  34. Ogata H, Kramer T, Wang H, Schilter D, Pelmenschikov V, van Gastel M, Neese F, Rauchfuss TB, Gee LB, Scott AD, Yoda Y, Tanaka Y, Lubitz W, Cramer SP (2015) Nat Commun 6:7890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pardo A, De Lacey AL, Fernandez VM, Fan HJ, Fan YB, Hall MB (2006) J Biol Inorg Chem 11:286–306

    Article  CAS  PubMed  Google Scholar 

  36. Wu H, Hall MB (2008) CR Chim 11:790–804

    Article  CAS  Google Scholar 

  37. Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ (1999) J Am Chem Soc 121:4468–4477

    Article  CAS  Google Scholar 

  38. Stein M, Lubitz W (2004) J Inorg Biochem 98:862–877

    Article  CAS  PubMed  Google Scholar 

  39. Söderhjelm P, Ryde U (2006) J Mol Struc (Theochem) 770:199–219

    Article  Google Scholar 

  40. Ryde U, Nilsson K (2003) J Mol Struc (Theochem) 632:259–275

    Article  CAS  Google Scholar 

  41. Ryde U, Nilsson K (2003) J Am Chem Soc 125:14232–14233

    Article  CAS  PubMed  Google Scholar 

  42. Nilsson K, Ryde U (2004) J Inorg Biochem 98:1539–1546

    Article  CAS  PubMed  Google Scholar 

  43. Rod TH, Ryde U (2005) J Chem Theory Comput 1:1240–1251

    Article  CAS  PubMed  Google Scholar 

  44. Rod TH, Ryde U (2005) Phys Rev Lett 94:138302

    Article  PubMed  Google Scholar 

  45. Hu L, Eliasson J, Heimdal J, Ryde U (2009) J Phys Chem A 113:11793–11800

    Article  CAS  PubMed  Google Scholar 

  46. Hu L, Söderhjelm P, Ryde U (2011) J Chem Theory Comput 7:761–777

    Article  CAS  PubMed  Google Scholar 

  47. Hu L, Söderhjelm P, Ryde U (2013) J Chem Theory Comput 9:640–649

    Article  CAS  PubMed  Google Scholar 

  48. Sumner S, Söderhjelm P, Ryde U (2013) J Chem Theory Comput 9:4205–4214

    Article  CAS  PubMed  Google Scholar 

  49. Kaukonen M, Söderhjelm P, Heimdal J, Ryde U (2008) J Phys Chem B 112:12537–12548

    Article  CAS  PubMed  Google Scholar 

  50. Kaukonen M, Söderhjelm P, Heimdal J, Ryde U (2008) J Chem Theory Comput 4:985–1001

    Article  CAS  PubMed  Google Scholar 

  51. Delcey MG, Pierloot K, Phung QM, Vancoillie S, Lindh R, Ryde U (2014) Phys Chem Chem Phys 16:7927–7938

    Article  CAS  PubMed  Google Scholar 

  52. Ogata H, Nishikawa K, Lubitz W (2015) Nature 520:571–574

    Article  PubMed  Google Scholar 

  53. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525–537

    Article  CAS  PubMed  Google Scholar 

  54. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucl Acids Res 33:W368–W371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz KM, Monard G, Needham P, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Salomon-Ferrer R, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  56. TURBOMOLE V65 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com

  57. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  PubMed  Google Scholar 

  58. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  59. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  60. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  61. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  62. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  63. Rappoport D, Furche F (2010) J Chem Phys 133:134105

    Article  PubMed  Google Scholar 

  64. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  65. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  66. Ryde U (1996) J Comput-Aided Mol Des 10:153–164

    Article  CAS  PubMed  Google Scholar 

  67. Ryde U, Olsson MHM (2001) Int J Quantum Chem 81:335–347

    Article  CAS  Google Scholar 

  68. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735

    Article  CAS  Google Scholar 

  69. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  70. dftd3 software http://www.thch.uni-bonn.de/tc/index.php?section=downloads&subsection=DFT-D3&lang=english

  71. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) J Chem Theory Comput 11:3696–3713

    Article  CAS  PubMed  Google Scholar 

  72. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  73. Luzhkov V, Warshel A (1992) J Comput Chem 13:199–213

    Article  CAS  Google Scholar 

  74. Heimdal J, Kaukonen M, Srnec M, Rulisek L, Ryde U (2011) Chem Phys Chem 12:3337–3347

    CAS  PubMed  Google Scholar 

  75. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  76. Kampa M, Pandelia M-E, Lubitz W, van Gastel M, Neese F (2013) J Am Chem Soc 135:3915–3925

    Article  CAS  PubMed  Google Scholar 

  77. Jayapal P, Sundararajan M, Hillier IH, Burton NA (2008) Phys Chem Chem Phys 10:4249–4257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by grants from the Swedish research council (project 2014-5540), the China Scholarship Council, and COST through Action CM1305 (ECOSTBio). The computations were performed on computer resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc at Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ryde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, G., Ryde, U. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 21, 383–394 (2016). https://doi.org/10.1007/s00775-016-1348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1348-9

Keywords

Navigation