Skip to main content
Log in

Hydrogen bond donation to the heme distal ligand of Staphylococcus aureus IsdG tunes the electronic structure

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Staphylococcus aureus IsdG catalyzes the final step of staphylococcal iron acquisition from host hemoglobin, whereby host-derived heme is converted to iron and organic products. The Asn7 distal pocket residue is known to be critical for enzyme activity, but the influence of this residue on the substrate electronic structure was unknown prior to this work. Here, an optical spectroscopic and density functional theory characterization of azide- and cyanide-inhibited wild type and N7A IsdG is presented. Magnetic circular dichroism data demonstrate that Asn7 perturbs the electronic structure of azide-inhibited, but not cyanide-inhibited, IsdG. As the iron-ligating α-atom of azide, but not cyanide, can act as a hydrogen bond acceptor, these data indicate that the terminal amide of Asn7 is a hydrogen bond donor to the α-atom of a distal ligand to heme in IsdG. Circular dichroism characterization of azide- and cyanide-inhibited forms of WT and N7A IsdG strongly suggests that the Asn7···N3 hydrogen bond influences the orientation of a distal azide ligand with respect to the heme substrate. Specifically, density functional theory calculations suggest that Asn7···N3 hydrogen bond donation causes the azide ligand to rotate about an axis perpendicular to the porphyrin plane and weakens the π-donor strength of the azide ligand. This lowers the energies of the Fe 3d xz and 3d yz orbitals, mixes Fe 3d xy and porphyrin a 2u character into the singly-occupied molecular orbital, and results in spin delocalization onto the heme meso carbons. These discoveries have important implications for the mechanism of heme oxygenation catalyzed by IsdG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Abs:

Electronic absorption

CD:

Circular dichroism

DFT:

Density functional theory

Fe(III)TMP(4-CNPy)2 :

Bis(4-cyanopyridine)ferrictetramesitylporphyrinate

Isd:

Iron-regulated surface determinant

IsdG–heme:

Heme-bound IsdG

IsdG–heme–CN:

Cyanide-inhibited IsdG

IsdG–heme–N3 :

Azide-inhibited IsdG

IsdG–heme–OOH:

Hydroperoxo-ligated, heme-bound IsdG

IsdI–heme–OH:

Hydroxide-ligated, heme-bound IsdI

KPi:

Potassium phosphate

MCD:

Magnetic circular dichroism

NaPi:

Sodium phosphate

PMSF:

Phenylmethanesulfonyl fluoride

TEV:

Tobacco etch virus

VTVH:

Variable-temperature, variable-field

WT:

Wild-type

References

  1. David MZ, Daum RS (2010) Clin Microbiol Rev 23:616–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Weinberg ED (1978) Microbiol Rev 42:45–66

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bridges K, Seligman PA (1995) Blood: principles and practice of hematology. J.B. Lippincott Company, Philadelphia

    Google Scholar 

  4. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Science 299:906–909

    Article  CAS  PubMed  Google Scholar 

  5. Reniere ML, Skaar EP (2008) Mol Microbiol 69:1304–1315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Stranger-Jones YK, Bae T, Schneewind O (2006) Proc Natl Acad Sci 103:16942–16947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Takayama SJ, Ukpabi G, Murphy MEP, Mauk AG (2011) Proc Natl Acad Sci 108:13071–13076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ukpabi G, Takayama SJ, Mauk AG, Murphy MEP (2012) J Biol Chem 287:34179–34188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Skaar EP, Gaspar AH, Schneewind O (2004) J Biol Chem 279:436–443

    Article  CAS  PubMed  Google Scholar 

  10. Wu R, Skaar EP, Zhang R, Joachimiak G, Gornicki P, Schneewind O, Joachimiak A (2005) J Biol Chem 280:2840–2846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Reniere ML, Ukpabi G, Harry SR, Stec DF, Krull R, Wright DW, Bachmann BO, Murphy ME, Skaar EP (2010) Mol Microbiol 75:1529–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Matsui T, Nambu S, Ono Y, Goulding CW, Tsumoto K, Ikeda-Saito M (2013) Biochemistry 52:3025–3027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Loutet SA, Kobylarz MJ, Chau CHT, Murphy MEP (2013) J Biol Chem 288:25749–25759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ragsdale SW, Yi L (2011) Antioxid Redox Signal 14:1039–1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Reniere ML, Haley KP, Skaar EP (2011) Biochemistry 50:6730–6737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Takahashi S, Wang J, Rousseau DL, Ishikawa K, Yoshida T, Host JR, Ikeda-Saito M (1994) J Biol Chem 269:1010–1014

    CAS  PubMed  Google Scholar 

  17. Ishikawa K, Takeuchi N, Takahashi S, Matera KM, Sato M, Shibahara S, Rousseau DL, Ikeda-Saito M, Yoshida T (1995) J Biol Chem 270:6345–6350

    Article  CAS  PubMed  Google Scholar 

  18. Gardner JD, Yi L, Ragsdale SW, Brunold TC (2010) J Biol Inorg Chem 15:1117–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee WC, Reniere ML, Skaar EP, Murphy ME (2008) J Biol Chem 283:30957–30963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rivera M, Rodriguez JC (2009) In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences. Royal Society of Chemistry, Cambridge, pp 241–293

    Google Scholar 

  21. Matsui T, Unno M, Ikeda-Saito M (2010) Acc Chem Res 43:240–247

    Article  CAS  PubMed  Google Scholar 

  22. Wilks A, Heinzl G (2014) Arch Biochem Biophys 544:87–95

    Article  CAS  PubMed  Google Scholar 

  23. Wilks A, Ikeda-Saito M (2014) Acc Chem Res 47:2291–2298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sugishima M, Sakamoto H, Higashimoto Y, Omata Y, Hayashi S, Noguchi M, Fukuyama K (2002) J Biol Chem 277:45086–45090

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez JC, Wilks A, Rivera M (2006) Biochemistry 45:4578–4592

    Article  PubMed  Google Scholar 

  26. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Nat Struct Biol 6:860–867

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Syvitski RT, Auclair K, Wilks A, Ortiz de Montellano PR, La Mar GN (2002) J Biol Chem 277:33018–33031

    Article  CAS  PubMed  Google Scholar 

  28. Syvitski RT, Li Y, Auclair K, Ortiz de Montellano PR, La Mar GN (2002) J Am Chem Soc 124:14296–14297

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Syvitski RT, Auclair K, Ortiz de Montellano PR, La Mar GN (2003) J Am Chem Soc 125:13392–13403

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Moreau Y, Derat E, Shaik S (2008) J Am Chem Soc 130:1953–1965

    Article  CAS  PubMed  Google Scholar 

  31. Gouterman M (1959) J Chem Phys 30:1139–1161

    Article  CAS  Google Scholar 

  32. Schweitzer-Stenner R (2011) J Porphyrins Phthalocyanines 15:312–337

    Article  CAS  Google Scholar 

  33. Hsu M, Woody RW (1971) J Am Chem Soc 93:3515–3525

    Article  CAS  PubMed  Google Scholar 

  34. Du J, Sono M, Dawson JH (2011) Coord Chem Rev 255:700–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Graves AB, Morse RP, Chao A, Iniguez A, Goulding CW, Liptak MD (2014) Inorg Chem 53:5931–5940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lehnert N (2012) J Inorg Biochem 110:83–93

    Article  CAS  PubMed  Google Scholar 

  37. Kapust RB, Tözsér J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Protein Eng 14:993–1000

    Article  CAS  PubMed  Google Scholar 

  38. Nallamsetty S, Kapust RB, Tözsér J, Cherry S, Tropea JE, Copeland TD, Waugh DS (2004) Protein Expr Purif 37:108–115

    Article  Google Scholar 

  39. Kim Y, Dementieva I, Zhou M, Wu R, Lezondra L, Quartey P, Joachimiak G, Korolev O, Li H, Joachimiak A (2004) J Struct Funct Genomics 5:111–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chim N, Iniguez A, Nguyen TQ, Goulding CW (2010) J Mol Biol 395:595–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Berry EA, Trumpower BL (1987) Anal Biochem 161:1–15

    Article  CAS  PubMed  Google Scholar 

  42. Cheesman MR, Walker FA (1996) J Am Chem Soc 118:7373–7380

    Article  CAS  Google Scholar 

  43. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  44. Thompson MA (2004) Planaria Software LLC, Seattle

  45. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  46. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  47. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  48. Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph 15:301–306

    Article  CAS  Google Scholar 

  49. Laaksonen A (2002) Center for scientific computing. Espoo

  50. Laaksonen A (1992) J Mol Graph 10:33–34

    Article  CAS  PubMed  Google Scholar 

  51. Soffer JB, Fradkin E, Pandiscia LA, Schweitzer-Stenner R (2013) Biochemistry 52:1397–1408

    Article  CAS  PubMed  Google Scholar 

  52. Soffer JB, Schweitzer-Stenner R (2014) J Biol Inorg Chem (In Press)

  53. Burak I, Treinin A (1963) J Chem Phys 39:189–196

    Article  CAS  Google Scholar 

  54. Zeng Y, Caignan GA, Bunce RA, Rodríguez JC, Wilks A, Rivera M (2005) J Am Chem Soc 127:9794–9807

    Article  CAS  PubMed  Google Scholar 

  55. Sun Y, Benabbas A, Zeng W, Kleingardner JG, Bren KL, Champion PM (2014) Proc Natl Acad Sci 111:6570–6575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Smith DW, Williams RJP (1970) In: Hemmerich P, Jorgensen CK, Neilands JB, Nyholm RS, Reinen D, Williams RJP (eds) Structure and bonding. Springer, New York, pp 1–45

    Chapter  Google Scholar 

  57. Rivera M, Caignan GA, Astashkin AV, Raitsimring AM, Shokhireva TK, Walker FA (2002) J Am Chem Soc 124:6077–6089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.D.L. thanks the University of Vermont for financial support and D.S.P. thanks ACS Project SEED for summer support. We also thank Eric Skaar (Vanderbilt University) and Celia Goulding (University of California-Irvine) for the gift of the pET15b vector encoding WT His6-tagged S. aureus IsdG, David Waugh (National Cancer Institute) for providing the BL21(DE3)-RIL cell line for over-expression of S219V TEV protease, Prof. Mark Riley (University of Queensland) for providing a free copy of the VTVH MCD simulation program, and Jill Chipman (Hamilton College) for initial CD spectroscopic characterization of IsdG–heme–N3. The authors acknowledge the Vermont Advanced Computing Core which is supported by NASA (NNX 06AC88G), at the University of Vermont for providing High Performance Computing resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Liptak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lockhart, C.L., Conger, M.A., Pittman, D.S. et al. Hydrogen bond donation to the heme distal ligand of Staphylococcus aureus IsdG tunes the electronic structure. J Biol Inorg Chem 20, 757–770 (2015). https://doi.org/10.1007/s00775-015-1263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1263-5

Keywords

Navigation