Skip to main content
Log in

In vitro effects of binuclear (η 6-p-cymene)ruthenium(II) complex containing bridging bis(nicotinate)-polyethylene glycol ester ligand on differentiation pathways of murine Th lymphocytes activated by T cell mitogen

JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

T cell differentiation into distinct T helper (Th) subpopulations is crucial in governing acquired immune responses as well as some inflammatory and autoimmune disorders. This study investigated potential of the novel neutral binuclear ruthenium(II) complexes 18 with general formula [{RuCl26-p-cym)}2μ-(NN)] (NN = bis(nicotinate)- and bis(iso-nicotinate)-polyethylene glycol esters; (3-py)COO(CH2CH2O) n CO(3-py) and (4-py)COO(CH2CH2O) n CO(4-py); n = 1–4), as well as [RuCl26-p-cym)(nic)] (R1, nic = nicotinate) and [RuCl26-p-cym)(inic)] (R2, inic = isonicotinate) as an immunomodulatory agents capable to direct Th cell differentiation. From all investigated complexes, [{RuCl26-p-cym)}2μ-{(3-py)COO(CH2CH2O)4CO(3-py)}] (4) was selected for further study because it did not affect splenocyte viability (in concentration up to 50 μM), but significantly reduced secretion of representative Th1 cytokine, IFN-γ induced by T cell mitogen. Besides IFN-γ, 4 inhibited dose dependently expression and production of representative Th17 cytokine, IL-17, in these cells. Otherwise, the production of anti-inflammatory cytokines IL-4 and IL-10 was upregulated. Also, 4 significantly increased CD4+CD25+FoxP3+ Treg cell frequency in the activated splenocytes. Moreover, ConA-induced expression of Th1 transcription factors, T-bet and STAT1, as well as of Th17-related protein STAT3 was attenuated upon exposure to 4, while the expression of Th2-related transcription factor GATA3 remained stable. In conclusion, ruthenium(II) complex 4 modulates immune system cell functions in vitro by inhibiting T cell differentiation towards pathogenic Th1/Th17 phenotype and inducing a regulatory phenotype characterized by IL-10 and IL-4 production, which may provide novel therapeutic opportunities for immune-inflammatory and/or autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kopf-Maier P (1994) Eur J Clin Pharmacol 47:1–16

    Article  CAS  PubMed  Google Scholar 

  2. Nazarov AA, Risse J, Ang WH, Schmitt F, Zava O, Ruggi A, Groessl M, Scopelitti R, Juillerat-Jeanneret L, Hartinger CG, Dyson PJ (2012) Inorg Chem 51:3633–3639

    Article  CAS  PubMed  Google Scholar 

  3. Pandrala M, Li F, Feterl M, Myliana J, Warner JM, Wallace L, Keene FR, Collins JG (2013) Dalton Trans 42:4686–4689

    Article  CAS  PubMed  Google Scholar 

  4. Inuguez E, Sanchez A, Vasquez MA, Martinez A, Olivas J, Sattler A, Sanchez-Delgado RA, Maldonado RA (2013) J Biol Inorg Chem 18:779–790

    Article  Google Scholar 

  5. Glans L, Ehnbom A, de Kock C, Martínez A, Estrada J, Smith PJ, Haukka M, Sánchez-Delgado RA, Nordlander E (2012) Dalton Trans 41:2764–2773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kreuser ED, Keppler BK, Berdel WE, Piest A, Thiel E (1992) Semin Oncol 19:73–81

    CAS  PubMed  Google Scholar 

  7. Ludwig G, Kaluđerović GN, Bette M, Block M, Paschke R, Steinborn D (2012) J Inorg Biochem 113:77–82

    Article  CAS  PubMed  Google Scholar 

  8. Ludwig G, Kaluđerović GN, Rueffer T, Bette M, Korb M, Block M, Paschke R, Lang H, Steinborn D (2013) Dalton Trans 42:3771–3774

    Article  CAS  PubMed  Google Scholar 

  9. Anitha P, Chitrapriya N, Jang YJ, Viswanathamurthi P (2013) J Photochem Photobiol B 129:17–26

    Article  CAS  PubMed  Google Scholar 

  10. Jiang GB, Xie YY, Lin GJ, Huang HL, Liang YH, Liu ZJ (2013) J Photochem Photobiol B 129:48–56

    Article  CAS  PubMed  Google Scholar 

  11. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) Cancer Lett 226:115–121

    Article  CAS  PubMed  Google Scholar 

  12. Brabec V, Nováková O (2006) Drug Resist Update 9:111–122

    Article  CAS  Google Scholar 

  13. Wang F, Bella J, Parkinson JA, Sadler PJ (2005) J Biol Inorg Chem 10:147–155

    Article  CAS  PubMed  Google Scholar 

  14. Sava G, Bergamo A (1999) Anticancer Res 19:1117–1124

    CAS  PubMed  Google Scholar 

  15. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S (1996) Int J Cancer 68:60–66

    Article  CAS  PubMed  Google Scholar 

  16. Pacor S, Zorzet S, Cocchietto M, Bacac M, Vadori M, Turrin C, Gava B, Castellarin A, Sava G (2004) J Pharmacol Exp Ther 310:737–744

    Article  CAS  PubMed  Google Scholar 

  17. Dwyer DS, Gordon K, Jones B (1995) Int J Immunopharmacol 17:931–940

    Article  CAS  PubMed  Google Scholar 

  18. Bastos CM, Gordon KA, Ocain TD (1998) Bioorg Med Chem Lett 8:147–150

    Article  CAS  PubMed  Google Scholar 

  19. Newcomb JR, Rivnay B, Bastos CM, Ocain TD, Gordon K, Gregory P, Turci SM, Sterne KA, Jesson M, Krieger J, Jenson JC, Jones B (2003) Inflamm Res 52:263–271

    CAS  PubMed  Google Scholar 

  20. Bacac M, Vadori M, Sava G, Pacor S (2004) Cancer Immunol Immunother 53:1101–1110

    Article  CAS  PubMed  Google Scholar 

  21. Antonarakis ES, Emadi A (2010) Cancer Chemother Pharmacol 66:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Eichhorn T, Hey-Hawkins E, Maksimović-Ivanić D, Mojić M, Schmidt J, Mijatović S, Schmidt H, Kaluđerović GN (2015) Appl Organomet Chem 29:20–25

    Article  CAS  Google Scholar 

  23. Silveira-Lacerda EdP, Vilanova-Costa CA, Pereira FdC, Hamaguchi A, Pavanin LA, Goulart LR, Homsi-Brandenburgo MI, Soares AM, dos Santos WB, Nomizo A (2010) Biol Trace Elem Res 133:270–283

    Article  CAS  Google Scholar 

  24. Parkin J, Cohen B (2001) Lancet 357:1777–1789

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Yamane H, Paul WE (2010) Annu Rev Immunol 28:445–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhou L, Chong MM, Littman DR (2009) Immunity 30:646–655

    Article  CAS  PubMed  Google Scholar 

  27. Jiang S, Dong C (2013) Immunol Rev 252:5–11

    Article  PubMed  Google Scholar 

  28. Zheng W, Flavell RA (1997) Cell 89:587–961

    Article  CAS  PubMed  Google Scholar 

  29. Awasthi A, Kuchroo VK (2009) Int Immunol 21:489–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chen Z, Laurence A, O’Shea JJ (2007) Semin Immunol 19:400–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) J Immunol 172:5213–5221

    Article  CAS  PubMed  Google Scholar 

  32. Campbell DJ, Koch MA (2011) Nat Rev Immunol 11:119–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dinarello CA (2010) Cell 140:935–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Saksida T, Stosic-Grujicic S, Timotijevic G, Sandler S, Stojanovic I (2012) Immunol Cell Biol 90:688–698

    Article  CAS  PubMed  Google Scholar 

  35. Kolls JK, Linden A (2004) Immunity 21:467–476

    Article  CAS  PubMed  Google Scholar 

  36. Billiau A, Matthys P (2009) Cytokine Growth Factor Rev 20:97–113

    Article  CAS  PubMed  Google Scholar 

  37. Onishi RM, Gaffen SL (2010) Immunology 129:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Magombedze G, Reddy PB, Eda S, Ganusov VV (2013) Front Physiol 4:206

    Article  PubMed Central  PubMed  Google Scholar 

  39. Betelli E, Korn T, Kuchroo VK (2007) Curr Opin Immunol 19:1–6

    Article  Google Scholar 

  40. Vahedi G, Poholek AC, Hand TW, Laurence A, Kanno Y, O’Shea JJ, Hirahara K (2013) Immunol Rev 252:24–40

    Article  PubMed Central  PubMed  Google Scholar 

  41. Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, Takahashi H, Sun HW, Kanno Y, Powrie F, O’Shea JJ (2010) Immunity 32:605–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tanaka S, Suto A, Iwamoto T, Kashiwakuma D, Kagami S, Suzuki K, Takatori H, Tamachi T, Hirose K, Onodera A, Suzuki J, Ohara O, Yamashita M, Nakayama T, Nakajima H (2014) J Exp Med 211:1857–1874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, Hipkiss EL, Getnet D, Goldberg MV, Maris CH, Housseau F, Yu H, Pardoll DM, Drake CG (2007) J Immunol 179:4313–4317

    Article  CAS  PubMed  Google Scholar 

  44. Moore KW, De Waal Malefyt R, Coffman RL, O’Garra A (2001) Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  45. Romagnani S (2006) Clin Exp Allergy 36:1357–1366

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan MH, Schindler U, Smiley ST, Grusby MJ (1996) Immunity 4:313–319

    Article  CAS  PubMed  Google Scholar 

  47. Rincόn M, Dérijard B, Chow C-W, Davis RJ, Flavell RA (1997) Genes Funct 1:51–68

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education, Science and Technological Development, Republic of Serbia (Grant No. 173013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miljana Momcilovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momcilovic, M., Eichhorn, T., Blazevski, J. et al. In vitro effects of binuclear (η 6-p-cymene)ruthenium(II) complex containing bridging bis(nicotinate)-polyethylene glycol ester ligand on differentiation pathways of murine Th lymphocytes activated by T cell mitogen. J Biol Inorg Chem 20, 575–583 (2015). https://doi.org/10.1007/s00775-015-1242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1242-x

Keywords

Navigation