Skip to main content
Log in

Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The impact of effective exercise against bone loss during experimental bed rest appears to be associated with increases in bone formation rather than reductions of bone resorption. Sclerostin and dickkopf-1 are important inhibitors of osteoblast activity. We hypothesized that exercise in bed rest would prevent increases in sclerostin and dickkopf-1. Twenty-four male subjects performed resistive vibration exercise (RVE; n = 7), resistive exercise only (RE; n = 8), or no exercise (control n = 9) during 60 days of bed rest (2nd Berlin BedRest Study). We measured serum levels of BAP, CTX-I, iPTH, calcium, sclerostin, and dickkopf-1 at 16 time-points during and up to 1 year after bed rest. In inactive control, after an initial increase in both BAP and CTX-I, sclerostin increased. BAP then returned to baseline levels, and CTX-I continued to increase. In RVE and RE, BAP increased more than control in bed rest (p ≤ 0.029). Increases of CTX-I in RE and RVE did not differ significantly to inactive control. RE may have attenuated increases in sclerostin and dickkopf-1, but this was not statistically significant. In RVE there was no evidence for any impact on sclerostin and dickkopf-1 changes. Long-term recovery of bone was also measured and 6–24 months after bed rest, and proximal femur bone mineral content was still greater in RVE than control (p = 0.01). The results, while showing that exercise against bone loss in experimental bed rest results in greater bone formation, could not provide evidence that exercise impeded the rise in serum sclerostin and dickkopf-1 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armbrecht G, Belavý DL, Gast G et al (2010) Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism. Osteoporosis Int 21:597–607

    Article  CAS  Google Scholar 

  2. Van Bezooijen RL, Svensson JP, Eefting D et al (2006) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22:19–28. doi:10.1359/jbmr.061002

    Article  Google Scholar 

  3. Frings-Meuthen P, Boehme G, Liphardt A-M et al (2013) Sclerostin and DKK1 levels during 14 and 21 days of bed rest in healthy young men. J Musculoskelet Neuronal Interact 13:45–52

    CAS  PubMed  Google Scholar 

  4. Bhattoa HP, Wamwaki J, Kalina E et al (2013) Serum sclerostin levels in healthy men over 50 years of age. J Bone Miner Metab 31:579–584. doi:10.1007/s00774-013-0451-z

    Article  CAS  PubMed  Google Scholar 

  5. Belavý DL, Beller G, Armbrecht G et al (2011) Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed-rest. Osteoporosis Int 22:1581–1591

    Article  Google Scholar 

  6. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

  7. Srinivasan S, Ausk BJ, Poliachik SL et al (2007) Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles. J Appl Physiol 102:1945–1952

    Article  PubMed  Google Scholar 

  8. Turner CH, Forwood MR, Rho JY, Yoshikawa T (1994) Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 9:87–97

    Article  CAS  PubMed  Google Scholar 

  9. Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23:313–318

    Article  CAS  PubMed  Google Scholar 

  10. Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269:E438–E442

    CAS  PubMed  Google Scholar 

  11. O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15:767–781

    Article  PubMed  Google Scholar 

  12. Rubin C, Turner AS, Bain S et al (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604

    Article  CAS  PubMed  Google Scholar 

  13. Rohlmann A, Schmidt H, Gast U et al (2014) In vivo measurements of the effect of whole body vibration on spinal loads. Eur Spine J 23:666–672. doi:10.1007/s00586-013-3087-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Belavý DL, Bock O, Börst H et al (2010) The 2nd Berlin BedRest Study: protocol and implementation. J Musculoskelet Neuronal Interact 10:207–219

    PubMed  Google Scholar 

  15. Müller M, Bosy-Westphal A, Dilba B et al (2006) Energieverbrauch und Energiebedarf gesunder Menschen [energy expenditure and energy requirements of healthy humans]. Aktuel Ernaeh Med 31:98–109

    Article  Google Scholar 

  16. Baecke JA, Burema J, Frijters JE (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36:936–942

    CAS  PubMed  Google Scholar 

  17. Belavý DL, Armbrecht G, Gast U et al (2010) Countermeasures against lumbar spine deconditioning in prolonged bed-rest: resistive exercise with and without whole-body vibration. J Appl Physiol 109:1801–1811

    Article  PubMed  Google Scholar 

  18. Wolfe BL, LeMura LM, Cole PJ (2004) Quantitative analysis of single- vs. multiple-set programs in resistance training. J Strength Cond Res 18:35–47

    PubMed  Google Scholar 

  19. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin

    Book  Google Scholar 

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  21. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76–81. doi:10.1016/j.molmed.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  22. Parfitt A (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4:1–6. doi:10.1016/0221-8747(82)90002-9

    Article  CAS  PubMed  Google Scholar 

  23. Lian JB, Javed A, Zaidi SK et al (2004) Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14:1–41

    Article  CAS  PubMed  Google Scholar 

  24. Rittweger J (2010) Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 108:877–904

    Article  PubMed  Google Scholar 

  25. Gómez-Cabello A, Ara I, González-Agüero A et al (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42:301–325. doi:10.2165/11597670-000000000-00000

    Article  PubMed  Google Scholar 

  26. Lau RWK, Liao L-R, Yu F et al (2011) The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil 25:975–988. doi:10.1177/0269215511405078

    Article  PubMed  Google Scholar 

  27. Slatkovska L, Alibhai SMH, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21:1969–1980. doi:10.1007/s00198-010-1228-z

    Article  CAS  PubMed  Google Scholar 

  28. Sitjà-Rabert M, Rigau D, Fort Vanmeerghaeghe A et al (2012) Efficacy of whole body vibration exercise in older people: a systematic review. Disabil Rehabil 34:883–893. doi:10.3109/09638288.2011.626486

    Article  PubMed  Google Scholar 

  29. Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229. doi:10.1096/fj.01-0166com

    Article  CAS  PubMed  Google Scholar 

  30. Holguin N, Muir J, Rubin C, Judex S (2009) Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J 9:470–477

    Article  PubMed  Google Scholar 

  31. Armbrecht G, Belavý DL, Backstrom M et al (2011) Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res 26:2399–2410

    Article  PubMed  Google Scholar 

  32. Beller G, Belavý DL, Sun L et al (2011) WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 49:858–866

    Article  PubMed  Google Scholar 

  33. Rittweger J, Felsenberg D (2009) Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 44:214–224

    Article  CAS  PubMed  Google Scholar 

  34. Lang T, LeBlanc A, Evans H et al (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  35. Belavý DL, Miokovic T, Armbrecht G, Felsenberg D (2013) Hypertrophy in the cervical muscles and thoracic discs in bed rest? J Appl Physiol 115:586–596. doi:10.1152/japplphysiol.00376.2013

    Article  PubMed  Google Scholar 

  36. Belavý DL, Ohshima H, Bareille M-P et al (2011) Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 d bed-rest in the Toulouse LTBR study. Acta Astronaut 69:406–419

    Article  Google Scholar 

  37. Bolotin HH, Sievänen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16:799–805. doi:10.1359/jbmr.2001.16.5.799

    Article  CAS  PubMed  Google Scholar 

  38. Trudel G, Payne M, Mädler B et al (2009) Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J Appl Physiol 107:540–548. doi:10.1152/japplphysiol.91530.2008

    Article  PubMed  Google Scholar 

  39. Trudel G, Coletta E, Cameron I et al (2012) Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men. J Appl Physiol 112:1824–1831. doi:10.1152/japplphysiol.00029.2012

    Article  PubMed  Google Scholar 

  40. Blanc S, Normand S, Ritz P et al (1998) Energy and water metabolism, body composition, and hormonal changes induced by 42 days of enforced inactivity and simulated weightlessness. J Clin Endocrinol Metab 83:4289–4297

    CAS  PubMed  Google Scholar 

  41. Belavý DL, Möhlig M, Pfeiffer AFH et al (2014) Preferential deposition of visceral adipose tissue occurs due to physical inactivity. Int J Obes (Lond). doi:10.1038/ijo.2014.26 (in press)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the subjects who participated in the study, the staff of the Pflegedirektion, the nurses who cared for the subjects and the many colleagues involved in the implementation of the bed rest study. We thank Prof. Markus Seibel for his comments on earlier versions of this manuscript. The 2nd Berlin BedRest Study (BBR2-2) was supported by grant 14431/02/NL/SH2 from the European Space Agency and grant 50WB0720 from the German Aerospace Center (DLR). The 2nd Berlin BedRest Study was also sponsored by Novotec Medical, Charité Universitätsmedizin Berlin, Siemens, Osteomedical Group, Wyeth Pharma, Servier Deutschland, P&G, Kubivent, Seca, Astra-Zeneka and General Electric. Daniel L. Belavý was supported by a post-doctoral fellowship from the Alexander von Humboldt Foundation.

Conflict of interest

Daniel L. Belavý, Natalie Baecker, Gabriele Armbrecht, Gisela Beller, Judith Buehlmeier, Petra Frings-Meuthen, Jörn Rittweger, Heinz J. Roth, Martina Herr, and Dieter Felsenberg declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Belavý.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavý, D.L., Baecker, N., Armbrecht, G. et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab 34, 354–365 (2016). https://doi.org/10.1007/s00774-015-0681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0681-3

Keywords

Navigation