Skip to main content
Log in

Chemiluminescence from thermal oxidation of amino acids and proteins

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Chemiluminescence (CL) with maximum emission in the range 550–650 nm is observed when proteins and certain amino acids are heated in air, and CL intensity is significantly reduced in nitrogen. Of the 20 common amino acids, lysine (Lys) has the highest thermal CL intensity by a factor of ~30 over arginine, threonine and asparagine. This finding differs from previous studies on amino acids and proteins oxidised using free radical initiators or singlet oxygen, where tryptophan was the dominant factor for CL emission. CL from heating solid Lys in air is accompanied by browning and the generation of fluorescent products which are characteristic of advanced glycosylation end products (AGEs) in thermally treated milk proteins. During thermal oxidation, Lys may react with its own carbonyl oxidation products to form fluorescent compounds similar to AGEs via the formation of Schiff bases. The mechanism of thermal oxidation of proteins may be similar to polyamide polymers, where reaction of free primary amino groups with carbonyls to form Schiff bases plays a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  • Alarcon E, Henriquez C, Aspee A, Lissi EA (2007) Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Photochem Photobiol 83:475–480

    CAS  PubMed  Google Scholar 

  • Allen NS, McKellar JF (1978) The photochemistry of commercial polyamides. Macromol Rev 13:241–281

    Article  CAS  Google Scholar 

  • Aspee A, Lissi EA (2000) Kinetics and mechanism of the chemiluminescence associated with the free radical-mediated oxidation of amino acids. Luminescence 15:273–282

    Article  CAS  PubMed  Google Scholar 

  • Aspee A, Lissi EA (2001) Kinetics of the chemiluminescence associated to the reaction between peroxyl radicals and proteins. J Protein Chem 20:479–485

    Article  CAS  PubMed  Google Scholar 

  • Aspee A, Lissi EA (2002) Chemiluminescence associated with amino acid oxidation mediated by hypochlorous acid. Luminescence 17:158–164

    Article  CAS  PubMed  Google Scholar 

  • Barnard ML, Gurdian S, Diep D, Ladd M, Turrens JF (1993) Protein and amino acid oxidation is associated with increased chemiluminescence. Arch Biochem Biophys 300:651–656

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E, Reiter R, Filipkowski M, Nakase Y, Chance B (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci 77:347–351

    Article  CAS  PubMed  Google Scholar 

  • Braun KP, Cody RB, Jones DR, Peterson CM (1995) A structural assignment for a stable acetaldehyde-lysine adduct. J Biol Chem 270:11263–11266

    Article  CAS  PubMed  Google Scholar 

  • Breitbart D, Nawar WW (1979) Thermal decomposition of lysine. J Agric Food Chem 27:511–514

    Article  CAS  Google Scholar 

  • Cadenas E, Arad ID, Boveris A, Fisher AB, Chance B (1980) Partial spectral analysis of the hydroperoxide-induced chemiluminescence of the perfused lung. FEBS Lett 111:413–418

    Article  CAS  PubMed  Google Scholar 

  • Du J, Gebicki JM (2004) Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol 36:2334–2343

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Williams LD, Masri MS (1974) Reductive alkylation of proteins with aromatic aldehydes and sodium cyanoborohydride. Int J Peptide Protein Res 6:183

    CAS  Google Scholar 

  • Fu S, Gebicki S, Jessup W, Gebicki JM, Dean RT (1995) Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J 311:821–827

    CAS  PubMed  Google Scholar 

  • Gebicki JM (1997) Protein hydroperoxides as new reactive oxygen species. Redox Rep 3:99–110

    CAS  Google Scholar 

  • Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749

    CAS  PubMed  Google Scholar 

  • Ghiggino KP, Nicholls CH, Pailthorpe MT (1975) Excitation energy transfer in wool keratin. J Photochem 4:155–159

    Article  CAS  Google Scholar 

  • Hoffmann T, Meyer RJ, Sorrell MF, Tuma DJ (1993) Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts. Alcohol Clin Exp Res 17:69–74

    Article  CAS  PubMed  Google Scholar 

  • Karstens T, Rossbach V (1989) Thermo-oxidative degradation of polyamide 6 and 6,6. Kinetics of the formation and inhibition of UV/VIS-active chromophores. Makromol Chem 190:3033–3053

    Article  CAS  Google Scholar 

  • Karstens T, Rossbach V (1990) Thermo-oxidative degradation of polyamide 6 and 6,6. Structure of UV/VIS-active chromophores. Makromol Chem 191:757–771

    Article  CAS  Google Scholar 

  • Khan AU, Kasha M (1963) Red chemiluminescence of molecular oxygen in aqueous solution. J Chem Phys 39:2015–2016

    Article  Google Scholar 

  • Lacey DJ, Dudler V (1996) Chemiluminescence from polypropylene. Part 2. The emission wavelengths during prolonged oxidation. Polym Degrad Stab 51:109–113

    Article  CAS  Google Scholar 

  • Lanska B, Matisova-Rychla L, Rychly J (1998) Chemiluminescence of polyamides: I. Luminescence accompanying autoxidation of lactams and thermolysis of lactam hydroperoxides. Polym Degrad Stab 61:119–127

    Article  CAS  Google Scholar 

  • Leclere J, Birlouez-Aragon I (2001) The fluorescence of advanced Maillard products is a good indicator of lysine damage during the Maillard reaction. J Agric Food Sci 49:4682–4687

    Article  CAS  Google Scholar 

  • Lissi EA, Caceres T, Videla LA (1988) Visible chemiluminescence from rat brain homogenates undergoing autoxidation. II. Kinetics of the luminescence decay. Free Radic Biol Med 4:93–97

    Article  CAS  PubMed  Google Scholar 

  • Matisova-Rychla L, Rychly J (2007) The potential of chemiluminescence in the research of thermal oxidation of polymers. In: Hopper AV (ed) Recent developments in polymer research. Nova Science, New York, pp 163–192

    Google Scholar 

  • Matisova-Rychla L, Lanska B, Rychly J (1994) Application of chemiluminescence to polymer degradation studies. Thermal oxidation of polyamide 6. Angew Makromol Chem 216:169–186

    Article  CAS  Google Scholar 

  • Millington KR (2006) The photoyellowing of wool. Part I. Factors affecting photoyellowing and experimental techniques. Color Technol 122:169–186

    Article  CAS  Google Scholar 

  • Millington KR, Maurdev G, Jones MJ (2007) The thermal chemiluminescence of fibrous proteins. Polym Degrad Stab 92:1505–1512

    Article  Google Scholar 

  • Namiki M, Oka M, Otsuka M, Miyazawa T, Fujimoto K, Namiki K, Kanamori N, Suzuki N (2007) Chemiluminescence developed at an early stage of the Maillard reaction. In: Labuza TP, Reineccius GA, Monnier V, O’Brien J, Bayes J (eds) Maillard reactions in chemistry, food, and health. Woodhead, Cambridge, pp 88–94

    Google Scholar 

  • Pollet E, Martinez A, Metha B, Watts BP, Turrens JF (1998) Role of tryptophan oxidation in peroxynitrite-dependent protein chemiluminescence. Arch Biochem Biophys 349:74–78

    Article  CAS  PubMed  Google Scholar 

  • Requena J, Chao C-C, Levine RL, Stadtman ER (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalysed oxidation in proteins. Proc Natl Acad Sci 98:69–74

    Article  CAS  PubMed  Google Scholar 

  • Salin ML, Bridges SH (1981) Chemiluminescence in wounded root tissue. Plant Physiol 67:43–46

    Article  CAS  PubMed  Google Scholar 

  • Salin ML, Quince KL, Hunter DJ (1985) Chemiluminescence from mechanically injured soybean root tissue. Photobiochem Photobiophys 9:271–279

    CAS  Google Scholar 

  • Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki J, Dean RT (1992) Long-lived reactive species on free-radical damaged proteins. Biochem J 282:621–624

    CAS  PubMed  Google Scholar 

  • Smith GJ, Melhuish WH (1985) Fluorescence and phosphorescence of wool keratin excited by UVA radiation. Text Res J 55:304–307

    Article  CAS  Google Scholar 

  • Strlic M, Kolar J, Pihlar B, Rychly J, Matisova-Rychla L (2000) Chemiluminescence during thermal and thermo-oxidative degradation of cellulose. Eur Polym J 36:2351–2358

    Article  CAS  Google Scholar 

  • Tiemblo P, Gomez-Elvira JM, Teyssedre G, Massines F, Laurent C (1999) Chemiluminescence spectral evolution along the thermal oxidation of isotactic polypropylene. Polym Degrad Stab 65:113–121

    Article  CAS  Google Scholar 

  • Totsune H, Nakano M, Inaba H (1993) Chemiluminescence from bamboo shoot cut. Biochem Biophys Res Comm 194:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Tsukino K, Satoh T, Ishii H, Nakata M (2008) Development of a multichannel Fourier-transform spectrometer to measure weak chemiluminescence: application to the emission of singlet oxygen dimol in the decomposition of hydrogen peroxide with gallic acid and K3[Fe(CN)6]. Chem Phys Lett 457:444–447

    Article  CAS  Google Scholar 

  • Turrens JF, Giulivi C, Boveris A (1986) Increased spontaneous chemiluminescence from liver homogenates and isolated hepatocytes upon inhibition of O2. J Free Radic Biol Med 2:135–140

    Article  CAS  PubMed  Google Scholar 

  • Watts BP, Barnard M, Turrens JF (1995) Peroxynitrite-dependent chemiluminescence of amino acids, proteins and intact cells. Arch Biochem Biophys 317:324–333

    Article  CAS  PubMed  Google Scholar 

  • Yasui H, Sakurai H (2000) Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Comm 269:131–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mike Jones for technical assistance with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Millington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millington, K.R., Ishii, H. & Maurdev, G. Chemiluminescence from thermal oxidation of amino acids and proteins. Amino Acids 38, 1395–1405 (2010). https://doi.org/10.1007/s00726-009-0352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0352-6

Keywords

Navigation