Skip to main content

Advertisement

Log in

Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Paper-based chips (PB-chips; also referred to as lab-on-paper chips) are using patterned paper as a substrate in a lab-on-a-chip platform. They represent an outstanding technique for fabrication of analytical devices for multiplex analyte assays. Typical features include low-cost, portability, disposability and small sample consumption. This review (with 211 refs.) gives a comprehensive and critical insight into current trends in terms of materials and techniques for use in fabrication, modification and detection. Following an introduction into the principles of PB-chips, we discuss features of using paper in lab-on-a-chip devices and the proper choice of paper. We then discuss the versatile methods known for fabrication of PB-chips (ranging from photolithography, plasma treatment, inkjet etching, plotting, to printing including flexographic printing). The modification of PB-chips with micro- and nano-materials possessing superior optical or electronic properties is then reviewed, and the final section covers detection techniques (such as colorimetry, electrochemistry, electrochemiluminescence and chemiluminescence) along with specific (bio)analytical examples. A conclusion and outlook section discusses the challenges and future prospectives in this field.

This review gives comprehensive and critical insights into the development of materials and techniques for lab-on-paper chips. Its focus is on materials and methods for fabrication, modification and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  CAS  Google Scholar 

  2. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  CAS  Google Scholar 

  3. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 87:36–52

    Article  CAS  Google Scholar 

  4. Gu W, Xu Y, Lou B, Lyu Z, Wang E (2014) One-step process for fabricating paper-based solid-state electrochemiluminescence sensor based on functionalized graphene. Electrochem Commun 38:57–60

    Article  CAS  Google Scholar 

  5. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38(3):429–446

    Article  CAS  Google Scholar 

  6. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150

    Article  CAS  Google Scholar 

  7. Coltro WKT, de Jesus DP, da Silva JAF, do Lago CL, Carrilho E (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31(15):2487–2498

    Article  CAS  Google Scholar 

  8. Moghadam BY, Connelly KT, Posner JD (2014) Isotachophoretic preconcenetration on paper-based microfluidic devices. Anal Chem 86(12):5829–5837

    Article  CAS  Google Scholar 

  9. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095

    Article  CAS  Google Scholar 

  10. Xu Y, Lv Z, Xia Y, Han Y, Lou B, Wang E (2013) Highly porous magnetite/graphene nanocomposites for a solid-state electrochemiluminescence sensor on paper-based chips. Anal Bioanal Chem 405(11):3549–3558

    Article  CAS  Google Scholar 

  11. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320

    Article  CAS  Google Scholar 

  12. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826

    Article  CAS  Google Scholar 

  13. Jiang Y, Ma C, Hu X, He Q (2014) Fabrication techniques of microfluidic paper-based chips and their applications. Prog Chem 26(1):167–177

    CAS  Google Scholar 

  14. Lou B, Chen C, Zhou Z, Zhang L, Wang E, Dong S (2013) A novel electrochemical sensing platform for anions based on conducting polymer film modified electrodes integrated on paper-based chips. Talanta 105:40–45

    Article  CAS  Google Scholar 

  15. Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D (2014) An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139(7):1637–1643

    Article  CAS  Google Scholar 

  16. Xu Y, Enomae T (2014) Paper substrate modification for rapid capillary flow in microfluidic paper-based analytical devices. RSC Adv 4(25):12867–12872

    Article  CAS  Google Scholar 

  17. Wang J, Monton MRN, Zhang X, Filipe CDM, Pelton R, Brennan JD (2014) Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics. Lab Chip 14(4):691–695

    Article  CAS  Google Scholar 

  18. Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42(2):450–457

    Article  CAS  Google Scholar 

  19. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1):011301

    Article  CAS  Google Scholar 

  20. Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17(3):649–659

    Article  Google Scholar 

  21. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893

    Article  CAS  Google Scholar 

  22. Zhang YL, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19

    Article  CAS  Google Scholar 

  23. Mu X, Zhang L, Chang S, Cui W, Zheng Z (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86(11):5338–5344

    Article  CAS  Google Scholar 

  24. Feng Q-M, Pan J-B, Zhang H-R, Xu J-J, Chen H-Y (2014) Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem Commun 50(75):10949–10951

    Article  CAS  Google Scholar 

  25. Lisowski P, Zarzycki PK (2013) Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development, applications and future trends. Chromatographia 76(19–20):1201–1214

    Article  CAS  Google Scholar 

  26. Xu Y, Wang E (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73

    Article  CAS  Google Scholar 

  27. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  CAS  Google Scholar 

  28. Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33(2):147–156

    Article  CAS  Google Scholar 

  29. Liu B, Du D, Hua X, Yu X-Y, Lin Y (2014) Paper-based electrochemical biosensors: from test strips to paper-based microfluidics. Electroanalysis 26(6):1214–1223

    Article  CAS  Google Scholar 

  30. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

    Article  CAS  Google Scholar 

  31. Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405(24):7573–7595

    Article  CAS  Google Scholar 

  32. Byrnes S, Thiessen G, Fu E (2013) Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 5(22):2821–2836

    Article  CAS  Google Scholar 

  33. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors 12(9):11505–11526

    Article  CAS  Google Scholar 

  34. Shah P, Zhu X, Li C-Z (2013) Development of paper-based analytical kit for point-of-care testing. 13(1): 83–91.

  35. Kentaro Yamada TGH, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54:5294–5310

    Article  CAS  Google Scholar 

  36. Adkins J, Boehle K, Henry C (2015) Electrochemical paper-based microfluidic devices. Electrophoresis 36(16):1811–1824

    Article  CAS  Google Scholar 

  37. Ge L, Yu J, Ge S, Yan M (2014) Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem 406(23):5613–5630

    Article  CAS  Google Scholar 

  38. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    CAS  Google Scholar 

  39. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425(6956):383–385

    Article  CAS  Google Scholar 

  40. Thom NK, Lewis GG, Yeung K, Phillips ST (2014) Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv 4(3):1334–1340

    Article  CAS  Google Scholar 

  41. Swerin A, Mira I (2014) Ink-jettable paper-based sensor for charged macromolecules and surfactants. Sens Actuators, B 195:389–395

    Article  CAS  Google Scholar 

  42. Liu W, Kou J, Xing H, Li B (2014) Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosens Bioelectron 52:76–81

    Article  CAS  Google Scholar 

  43. Elsharkawy M, Schutzius TM, Megaridis CM (2014) Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices. Lab Chip 14(6):1168–1175

    Article  CAS  Google Scholar 

  44. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  CAS  Google Scholar 

  45. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732

    Article  CAS  Google Scholar 

  46. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloid Surface B 76(2):564–570

    Article  CAS  Google Scholar 

  47. Yu CC, Chou SY, Tseng YC, Tseng SC, Yen YT, Chen HL (2015) Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 7(5):1667–1677

    Article  CAS  Google Scholar 

  48. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105(50):19606–19611

    Article  CAS  Google Scholar 

  49. Arrastia M, Avoundjian A, Ehrlich PS, Eropkin M, Levine L, Gomez FA (2015) Development of a microfluidic-based assay on a novel nitrocellulose platform. Electrophoresis 36(6):884–888

    Article  CAS  Google Scholar 

  50. Al-Tamimi M, Shen W, Zeineddine R, Tran H, Garnier G (2012) Validation of paper-based assay for rapid blood typing. Anal Chem 84(3):1661–1668

    Article  CAS  Google Scholar 

  51. Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707

    Article  CAS  Google Scholar 

  52. Cretich M, Sedini V, Damin F, Pelliccia M, Sola L, Chiari M (2010) Coating of nitrocellulose for colorimetric DNA microarrays. Anal Biochem 397(1):84–88

    Article  CAS  Google Scholar 

  53. Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82(1):329–335

    Article  CAS  Google Scholar 

  54. Lu Y, Lin B, Qin J (2011) Patterned paper as a low-cost, flexible substrate for rapid prototyping of pdms microdevices via "liquid molding". Anal Chem 83(5):1830–1835

    Article  CAS  Google Scholar 

  55. Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G (2010) Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens Actuators, B 145(1):488–494

    Article  CAS  Google Scholar 

  56. Carofiglio T, Fregonese C, Mohr GJ, Rastrelli F, Tonellato U (2006) Optical sensor arrays: one-pot, multiparallel synthesis and cellulose immobilization of pH and metal ion sensitive azo-dyes. Tetrahedron 62(7):1502–1507

    Article  CAS  Google Scholar 

  57. Kwong P, Gupta M (2012) Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal Chem 84(22):10129–10135

    Article  CAS  Google Scholar 

  58. Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81(20):8447–8452

    Article  CAS  Google Scholar 

  59. Santhiago M, Nery EW, Santos GP, Kubota LT (2013) Microfluidic paper-based devices for bioanalytical applications. Bioanalysis 6(1):89–106

    Article  CAS  Google Scholar 

  60. Liu W, Luo J, Guo Y, Kou J, Li B, Zhang Z (2014) Nanoparticle coated paper-based chemiluminescence device for the determination of l-cysteine. Talanta 120:336–341

    Article  CAS  Google Scholar 

  61. Di Risio S, Yan N (2010) Bioactive paper through inkjet printing. J Adhes Sci Technol 24(3):661–684

    Article  CAS  Google Scholar 

  62. Yang G, Xie L, Mantysalo M, Chen J, Tenhunen H, Zheng L-R (2012) Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology. IEEE transactions on information technology in biomedicine 16(6):1043–1050

    Article  Google Scholar 

  63. Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5(3):209–218

    Article  CAS  Google Scholar 

  64. He Q, Ma C, Hu X, Chen H (2012) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem 85(3):1327–1331

    Article  CAS  Google Scholar 

  65. Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80(23):9131–9134

    Article  CAS  Google Scholar 

  66. Li X, Tian J, Shen W (2010) Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem 396(1):495–501

    Article  CAS  Google Scholar 

  67. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934

    Article  CAS  Google Scholar 

  68. Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80(9):3387–3392

    Article  CAS  Google Scholar 

  69. Nie J, Zhang Y, Lin L, Zhou C, Li S, Zhang L, Li J (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84(15):6331–6335

    Article  CAS  Google Scholar 

  70. Lu Y, Shi W, Qin J, Lin B (2009) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82(1):329–335

    Article  CAS  Google Scholar 

  71. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82

    Article  CAS  Google Scholar 

  72. Yu L, Shi ZZ (2015) Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of parafilm (R). Lab Chip 15(7):1642–1645

    Article  CAS  Google Scholar 

  73. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483

    Article  CAS  Google Scholar 

  74. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5(3):491–502

    Article  CAS  Google Scholar 

  75. Maxwell EJ, Mazzeo AD, Whitesides GM (2013) Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull 38(04):309–314

    Article  CAS  Google Scholar 

  76. Deng L, Chen C, Zhu C, Dong S, Lu H (2014) Multiplexed bioactive paper based on GO@SiO2@CeO2 nanosheets for a low-cost diagnostics platform. Biosens Bioelectron 52:324–329

    Article  CAS  Google Scholar 

  77. Roy S (2007) Fabrication of micro- and nano-structured materials using mask-less processes. J Phys D Appl Phys 40(22):R413–R426

    Article  CAS  Google Scholar 

  78. Tseng P, Murray C, Kim D, Di Carlo D (2014) Research highlights: printing the future of microfabrication. Lab Chip 14(9):1491–1495

    Article  CAS  Google Scholar 

  79. Balu B, Berry AD, Hess DW, Breedveld V (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9(21):3066–3075

    Article  CAS  Google Scholar 

  80. Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 81(13):5474–5483

    Article  CAS  Google Scholar 

  81. Li M, Tian J, Al-Tamimi M, Shen W (2012) Paper-based blood typing device that reports patient's blood type "in writing". Angew Chem Int Ed 51(22):5497–5501

    Article  CAS  Google Scholar 

  82. Cai L, Zhong M, Li H, Xu C, Yuan B (2015) Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions. Biomicrofluidics 9(4):046503

    Article  CAS  Google Scholar 

  83. Xu CX, Cai LF, Zhong MH, Zheng SY (2015) Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv 5(7):4770–4773

    Article  CAS  Google Scholar 

  84. Rivas L, Medina-Sanchez M, de la Escosura-Muniz A, Merkoci A (2014) Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab Chip 14(22):4406–4414

    Article  CAS  Google Scholar 

  85. Xu Y, Lou B, Lv Z, Zhou Z, Zhang L, Wang E (2013) Paper-based solid-state electrochemiluminescence sensor using poly(sodium 4-styrenesulfonate) functionalized graphene/nafion composite film. Anal Chim Acta 763:20–27

    Article  CAS  Google Scholar 

  86. Redha ZM, Baldock SJ, Fielden PR, Goddard NJ, Brown BJT, Haggett BGD, Andres R, Birch BJ (2009) Hybrid microfluidic sensors fabricated by screen printing and injection molding for electrochemical and electrochemiluminescence detection. Electroanalysis 21(3–5):422–430

    Article  CAS  Google Scholar 

  87. Javier del Campo F (2014) Miniaturization of electrochemical flow devices A mini-review. Electrochem Commun 45:91–94

    Article  CAS  Google Scholar 

  88. Tomazelli Coltro WK, Cheng C-M, Carrilho E, de Jesus DP (2014) Recent advances in low-cost microfluidic platforms for diagnostic applications. Electrophoresis 35(16):2309–2324

    Article  CAS  Google Scholar 

  89. Russo A, Ahn BY, Adams JJ, Duoss EB, Bernhard JT, Lewis JA (2011) Pen-on-paper flexible electronics. Adv Mater 23(30):3426–3430

    Article  CAS  Google Scholar 

  90. Gullapalli H, Vemuru VS, Kumar A, Botello-Mendez A, Vajtai R, Terrones M, Nagarajaiah S, Ajayan PM (2010) Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6(15):1641–1646

    Article  CAS  Google Scholar 

  91. Tseng S-C, Yu C-C, Wan D, Chen H-L, Wang LA, Wu M-C, Su W-F, Han H-C, Chen L-C (2012) Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal Chem 84(11):5140–5145

    Article  CAS  Google Scholar 

  92. Cheng M-L, Tsai B-C, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708(1–2):89–96

    Article  CAS  Google Scholar 

  93. Mahadeva SK, Yun S, Kim J (2011) Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens Actuators, A 165(2):194–199

    Article  CAS  Google Scholar 

  94. Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sens Actuators, B 150(1):308–313

    Article  CAS  Google Scholar 

  95. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169

    Article  CAS  Google Scholar 

  96. Tao H, Chieffo LR, Brenckle MA, Siebert SM, Liu M, Strikwerda AC, Fan K, Kaplan DL, Zhang X, Averitt RD (2011) Metamaterials on paper as a sensing platform. Adv Mater 23(28):3197–3201

    Article  CAS  Google Scholar 

  97. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250

    Article  CAS  Google Scholar 

  98. Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sens Actuators, B 160(1):1404–1412

    Article  CAS  Google Scholar 

  99. Fang X, Wei S, Kong J (2014) Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays. Lab Chip 14(5):911–915

    Article  CAS  Google Scholar 

  100. Thuo MM, Martinez RV, Lan W-J, Liu X, Barber J, Atkinson MBJ, Bandarage D, Bloch J-F, Whitesides GM (2014) Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237

    Article  CAS  Google Scholar 

  101. He Y, Wu WB, Fu JZ (2015) Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv 5(4):2694–2701

    Article  CAS  Google Scholar 

  102. Chen S-S, Hu C-W, Yu IF, Liao Y-C, Yang J-T (2014) Origami paper-based fluidic batteries for portable electrophoretic devices. Lab Chip 14(12):2124–2130

    Article  CAS  Google Scholar 

  103. Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12(17):3150–3158

    Article  CAS  Google Scholar 

  104. Breault-Turcot J, Masson JF (2012) Nanostructured substrates for portable and miniature SPR biosensors. Anal Bioanal Chem 403(6):1477–1484

    Article  CAS  Google Scholar 

  105. Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y (2014) Nanomaterial-enhanced paper-based biosensors. TRAC-Trend Anal Chem 58:31–39

    Article  CAS  Google Scholar 

  106. Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84(8):3745–3750

    Article  CAS  Google Scholar 

  107. Wu Y, Xue P, Kang Y, Hui KM (2013) Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem 85(18):8661–8668

    Article  CAS  Google Scholar 

  108. Li L, Xu J, Zheng X, Ma C, Song X, Ge S, Yu J, Yan M (2014) Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens Bioelectron 61:76–82

    Article  CAS  Google Scholar 

  109. Li W, Chen M, Li W, You C, Wei J, Zhi L (2014) Synthesis of air stable silver nanoparticles and their application as conductive ink on paper based flexible electronics. Mater Res Innovations 18(S4):S4–723–S724–727

    Article  CAS  Google Scholar 

  110. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19

    Article  CAS  Google Scholar 

  111. Shi CG, Shan X, Pan ZQ, Xu JJ, Lu C, Bao N, Gu HY (2012) Quantum dot (QD)-modified carbon tape electrodes for reproducible electrochemiluminescence (ECL) emission on a paper-based platform. Anal Chem 84(6):3033–3038

    Article  CAS  Google Scholar 

  112. Li L, Li W, Ma C, Yang H, Ge S, Yu J (2014) Paper-based electrochemiluminescence immunodevice for carcinoembryonic antigen using nanoporous gold-chitosan hybrids and graphene Quantum dots functionalized Au@Pt. Sens Actuators, B 202:314–322

    Article  CAS  Google Scholar 

  113. Gao CM, Su M, Wang YH, Ge SG, Yu JH (2015) A disposable paper-based electrochemiluminescence device for ultrasensitive monitoring of CEA based on Ru(bpy)3 2+@Au nanocages. RSC Adv 5(36):28324–28331

    Article  CAS  Google Scholar 

  114. Wu L, Ma C, Zheng X, Liu H, Yu J (2015) Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA-carbon dots nanotags based on rolling circle amplification. Biosens Bioelectron 68:413–420

    Article  CAS  Google Scholar 

  115. Ferreira DCM, Giordano GF, Soares CCDSP, de Oliveira JFA, Mendes RK, Piazzetta MH, Gobbi AL, Cardoso MB (2015) Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta 141:188–194

    Article  CAS  Google Scholar 

  116. Liang LL, Ge SG, Li L, Liu F, Yu JH (2015) Microfluidic paper-based multiplex colorimetric immunodevice based on the catalytic effect of Pd/Fe3O4@C peroxidase mimetics on multiple chromogenic reactions. Anal Chim Acta 862:70–76

    Article  CAS  Google Scholar 

  117. Doughan S, Uddayasankar U, Krull UJ (2015) A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and Quantum dots as acceptors. Anal Chim Acta 878:1–8

    Article  CAS  Google Scholar 

  118. Guo S, Wang W, Ozkan CS, Ozkan M (2013) Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors. J Mater Res 28(07):918–926

    Article  CAS  Google Scholar 

  119. Zhang Y, Ge L, Ge S, Yan M, Yan J, Zang D, Lu J, Yu J, Song X (2013) TiO2–graphene complex nanopaper for paper-based label-free photoelectrochemical immunoassay. Electrochim Acta 112:620–628

    Article  CAS  Google Scholar 

  120. Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens Bioelectron 56:77–82

    Article  CAS  Google Scholar 

  121. Li J, Cheng X, Sun J, Brand C, Shashurin A, Reeves M, Keidar M (2014) Paper-based ultracapacitors with carbon nanotubes-graphene composites. J Appl Phys 115(16):164301

    Article  CAS  Google Scholar 

  122. Feng JX, Ye SH, Lu XF, Tong YX, Li GR (2015) Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl Mater Interfaces 7(21):11444–11451

    Article  CAS  Google Scholar 

  123. Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140(6):1817–1821

    Article  CAS  Google Scholar 

  124. Wu LD, Ma C, Ge L, Kong QK, Yan M, Ge SG, Yu JH (2015) Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosens Bioelectron 63:450–457

    Article  CAS  Google Scholar 

  125. Li L, kong Q, Zhang Y, Dong C, Ge S, Yu J (2015) A 3D electrochemical immunodevice based on a porous Pt-paper electrode and metal ion functionalized flower-like Au nanoparticles. J Mater Chem B 3(14):2764–2769

    Article  CAS  Google Scholar 

  126. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84(6):2900–2907

    Article  CAS  Google Scholar 

  127. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233

    Article  CAS  Google Scholar 

  128. Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80(22):8431–8437

    Article  CAS  Google Scholar 

  129. Yu XW, Sheng KX, Chen J, Li C, Shi GQ (2014) Electrochemical biosensing based on graphene modified electrodes. Anal Chim Acta 72(3):319–332

    CAS  Google Scholar 

  130. Wei Y-C, Fu L-M, Lin C-H (2013) Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device. Microfluid Nanofluid 14(3–4):583–590

    Article  CAS  Google Scholar 

  131. Godino N, Gorkin R III, Bourke K, Ducree J (2012) Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 12(18):3281–3284

    Article  CAS  Google Scholar 

  132. Yu J, Wang S, Ge L, Ge S (2011) A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens Bioelectron 26(7):3284–3289

    Article  CAS  Google Scholar 

  133. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83(4):1300–1306

    Article  CAS  Google Scholar 

  134. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31(1):212–218

    Article  CAS  Google Scholar 

  135. Marle L, Greenway GM (2005) Determination of hydrogen peroxide in rainwater in a miniaturised analytical system. Anal Chim Acta 548(1–2):20–25

    Article  CAS  Google Scholar 

  136. Yin J, Xu Y, Li J, Wang E (2008) Analysis of quinolizidine alkaloids in Sophora flavescens ait. by capillary electrophoresis with tris(2,2'-bipyridyl) ruthenium (II)-based electrochemiluminescence detection. Talanta 75(1):38–42

    Article  CAS  Google Scholar 

  137. Xu Y, Liu Y, Zhu J, Wang E (2013) Discovered triethylamine as impurity in synthetic DNAs for and by electrochemiluminescence techniques. Talanta 116:308–314

    Article  CAS  Google Scholar 

  138. Li J, Xu Y, Wei H, Huo T, Wang E (2007) Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes. Anal Chem 79(14):5439–5443

    Article  CAS  Google Scholar 

  139. Li J, Huang M, Liu X, Wei H, Xu Y, Xu G, Wang E (2007) Enhanced electrochemiluminescence sensor from tris(2,2'-bipyridyl) ruthenium(II) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode. Analyst 132(7):687–691

    Article  CAS  Google Scholar 

  140. Fiaccabrino GC, de Rooij NF, Koudelka-Hep M (1998) On-chip generation and detection of electrochemiluminescence. Anal Chim Acta 359(3):263–267

    Article  CAS  Google Scholar 

  141. Chen Y, Zilberman Y, Mostafalu P, Sonkusale SR (2015) Paper based platform for colorimetric sensing of dissolved NH3 and CO2. Biosens Bioelectron 67:477–484

    Article  CAS  Google Scholar 

  142. Wei XF, Tian T, Jia SS, Zhu Z, Ma YL, Sun JJ, Lin ZY, Yang CJ (2015) Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Anal Chem 87(8):4275–4282

    Article  CAS  Google Scholar 

  143. Su YC, Ma SH, Jiang KP, Han XJ (2015) CdTe-paper-based visual sensor for detecting methyl viologen. Chin J Chem 33(4):446–450

    Article  CAS  Google Scholar 

  144. Wang B, Lin Z, Wang M (2015) Fabrication of a paper-based microfluidic device to readily determine nitrite ion concentration by simple colorimetric assay. J Chem Educ 92(4):733–736

    Article  CAS  Google Scholar 

  145. Chaiyo S, Siangproh W, Apilux A, Chailapakul O (2015) Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal Chim Acta 866:75–83

    Article  CAS  Google Scholar 

  146. Gomes H, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61

    Article  CAS  Google Scholar 

  147. Weaver AA, Halweg S, Joyce M, Lieberman M, Goodson HV (2015) Incorporating yeast biosensors into paper-based analytical tools for pharmaceutical analysis. Anal Bioanal Chem 407(2):615–619

    Article  CAS  Google Scholar 

  148. Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, Daigger GT, Pelton R, Brennan JD, Filipe CDM (2015) Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res 70:360–369

    Article  CAS  Google Scholar 

  149. Choleva TG, Kappi FA, Giokas DL, Vlessidis AG (2015) Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes. Anal Chim Acta 860:61–69

    Article  CAS  Google Scholar 

  150. He Y, Wu Y, Fu J-Z, Wu W-B (2015) Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv 5(95):78109–78127

    Article  CAS  Google Scholar 

  151. Badu-Tawiah AK, Lathwal S, Kaastrup K, Al-Sayah M, Christodouleas DC, Smith BS, Whitesides GM, Sikes HD (2015) Polymerization-based signal amplification for paper-based immunoassays. Lab Chip 15(3):655–659

    Article  CAS  Google Scholar 

  152. Peters KL, Corbin I, Kaufman LM, Zreibe K, Blanes L, McCord BR (2015) Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal Methods 7(1):63–70

    Article  CAS  Google Scholar 

  153. Xiang X, Zhang Z, Shi JB, Huang FH (2015) Paper-based analytical device with colorimetric assay application to the determination of phenolic acids and recognition of Fe3+. RSC Adv 5(4):2615–2619

    Article  CAS  Google Scholar 

  154. Wei J, Liu H, Liu F, Zhu M, Zhou X, Xing D (2014) Miniaturized paper-based gene sensor for rapid and sensitive identification of contagious plant virus. ACS Appl Mater Interfaces 6(24):22577–22584

    Article  CAS  Google Scholar 

  155. Gao BB, Liu H, Gu ZZ (2014) Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface. Langmuir 30(50):15041–15046

    Article  CAS  Google Scholar 

  156. Sameenoi Y, Nongkai PN, Nouanthavong S, Henry CS, Nacapricha D (2014) One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139(24):6580–6588

    Article  CAS  Google Scholar 

  157. Jang H, Noh H (2015) Chemiluminescent detection of tear glucose on paper microfluidic devices. Macromol Res 23(5):493–495

    Article  CAS  Google Scholar 

  158. Liu W, Guo Y, Luo J, Kou J, Zheng H, Li B, Zhang Z (2015) A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos. Spectrochim Acta A Mol Biomol Spectrosc 141:51–57

    Article  CAS  Google Scholar 

  159. Liu W, Guo YM, Li HF, Zhao M, Lai ZS, Li BX (2015) A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochim Acta A Mol Biomol Spectrosc 137:1298–1303

    Article  CAS  Google Scholar 

  160. Zhang J, Huang L, Lin Y, Chen L, Zeng Z, Shen L, Chen Q, Shi W (2015) Pencil-trace on printed silver interdigitated electrodes for paper-based NO2 gas sensors. Appl Phys Lett 106(14):143101

    Article  CAS  Google Scholar 

  161. Feng QM, Cai M, Shi CG, Bao N, Gu HY (2015) Integrated paper-based electroanalytical devices for determination of dopamine extracted from striatum of rat. Sens Actuators, B 209:870–876

    Article  CAS  Google Scholar 

  162. Sekar NC, Ge LY, Shaegh SAM, Ng SH, Tan SN (2015) A mediated turnip tissue paper-based amperometric hydrogen peroxide biosensor. Sens Actuators, B 210:336–342

    Article  CAS  Google Scholar 

  163. Lin XY, Wu LL, Pan ZQ, Shi CG, Bao N, Gu HY (2015) Paper-based analytical devices for electrochemical study of the breathing process of red blood cells. Talanta 135:23–26

    Article  CAS  Google Scholar 

  164. Lei KF, Yang SI, Tsai SW, Hsu HT (2015) Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction. Talanta 134:264–270

    Article  CAS  Google Scholar 

  165. Wang Y, Liu H, Wang P, Yu J, Ge S, Yan M (2015) Chemiluminescence excited photoelectrochemical competitive immunosensing lab-on-paper device using an integrated paper supercapacitor for signal amplication. Sens Actuators, B 208:546–553

    Article  CAS  Google Scholar 

  166. Sun G, Y-n D, Ma C, Zhang Y, Ge S, Yu J, Song X (2014) Paper-based electrochemical immunosensor for carcinoembryonic antigen based on three dimensional flower-like gold electrode and gold-silver bimetallic nanoparticles. Electrochim Acta 147:650–656

    Article  CAS  Google Scholar 

  167. Hu J, Ho KT, Zou XU, Smyrl WH, Stein A, Buhlmann P (2015) All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices. Anal Chem 87(5):2981–2987

    Article  CAS  Google Scholar 

  168. Cuartero M, Crespo GA, Bakker E (2015) Paper-based thin-layer coulometric sensor for halide determination. Anal Chem 87(3):1981–1990

    Article  CAS  Google Scholar 

  169. Lisak G, Cui JW, Bobacka J (2015) Paper-based microfluidic sampling for potentiometric determination of ions. Sens Actuators, B 207:933–939

    Article  CAS  Google Scholar 

  170. Su M, Ge L, Kong Q, Zheng X, Ge S, Li N, Yu J, Yan M (2015) Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 63:232–239

    Article  CAS  Google Scholar 

  171. Luo L, Li X, Crooks RM (2014) Low-voltage origami-paper-based electrophoretic device for rapid protein separation. Anal Chem 86(24):12390–12397

    Article  CAS  Google Scholar 

  172. Sekar NC, Shaegh SAM, Ng SH, Ge L, Tan SN (2014) A paper-based amperometric glucose biosensor developed with Prussian blue-modified screen-printed electrodes. Sens Actuators, B 204:414–420

    Article  CAS  Google Scholar 

  173. Feng QM, Chen HY, Xu JJ (2015) Disposable paper-based bipolar electrode array for multiplexed electrochemiluminescence detection of pathogenic DNAs. Sci China Chem 58(5):810–818

    Article  CAS  Google Scholar 

  174. Feng Q-M, Liu Z, Chen H-Y, Xu J-J (2014) Paper-based electrochemiluminescence biosensor for cancer cell detection. Electrochem Commun 49:88–92

    Article  CAS  Google Scholar 

  175. Hossain SMZ, Ozimok C, Sicard C, Aguirre S, Ali MM, Li Y, Brennan J (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403(6):1567–1576

    Article  CAS  Google Scholar 

  176. Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, Remcho VT (2015) Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ 92(4):737–741

    Article  CAS  Google Scholar 

  177. Pourreza N, Golmohammadi H (2015) Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta 131:136–141

    Article  CAS  Google Scholar 

  178. Liu FF, Zhang CS (2015) A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of listeria monocytogenes. Sens Actuators, B 209:399–406

    Article  CAS  Google Scholar 

  179. Renault C, Anderson MJ, Crooks RM (2014) Electrochemistry in hollow-channel paper analytical devices. J Am Chem Soc 136(12):4616–4623

    Article  CAS  Google Scholar 

  180. Lapos JA, Ewing AG (2000) Injection of fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis. Anal Chem 72(19):4598–4602

    Article  CAS  Google Scholar 

  181. Gencoglu A, Minerick AR (2014) Electrochemical detection techniques in micro-and nanofluidic devices. Microfluid Nanofluid 17(5):781–807

    Article  CAS  Google Scholar 

  182. Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341

    Article  CAS  Google Scholar 

  183. Xiang Q, Gao Y, Xu Y, Wang E (2007) Capillary electrophoresis-amperometric determination of antioxidant propyl gallate and butylated hydroxyanisole in foods. Anal Sci 23(6):713–717

    Article  CAS  Google Scholar 

  184. Dong Y, Ding Y, Zhou Y, Chen J, Wang C (2014) Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode. J Electroanal Chem 717:206–212

    Article  CAS  Google Scholar 

  185. Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34(14):2085–2091

    Article  CAS  Google Scholar 

  186. Lan WJ, Zou XU, Hamedi MM, Hu J, Parolo C, Maxwell EJ, Buhlmann P, Whitesides GM (2014) Paper-based potentiometric ion sensing. Anal Chem 86(19):9548–9553

    Article  CAS  Google Scholar 

  187. Delaney JL, Doeven EH, Harsant AJ, Hogan CF (2013) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 790:56–60

    Article  CAS  Google Scholar 

  188. Delaney JL, Hogan CF (2015) Mobile phone based electrochemiluminescence detection in paper-based microfluidic sensors. Mobile Health Technologies: Methods and Protocols 1256:277–289

    CAS  Google Scholar 

  189. Petruci JFD, Cardoso AA (2015) Sensitive luminescent paper-based sensor for the determination of gaseous hydrogen sulfide. Anal Methods 7(6):2687–2692

    Article  CAS  Google Scholar 

  190. Jang G, Kim J, Kim D, Lee TS (2015) Synthesis of triphenylamine-containing conjugated polyelectrolyte and fabrication of fluorescence color-changeable, paper-based sensor strips for biothiol detection. Polymr Chem 6(5):714–720

    Article  CAS  Google Scholar 

  191. Zhu YQ, Zhang L, Yang LB (2015) Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater Res Bull 63:199–204

    Article  CAS  Google Scholar 

  192. Saha A, Jana NR (2015) Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS Appl Mater Interfaces 7(1):996–1003

    Article  CAS  Google Scholar 

  193. Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12(5):876–881

    Article  CAS  Google Scholar 

  194. Qu LL, Song QX, Li YT, Peng MP, Li DW, Chen LX, Fossey JS, Long YT (2013) Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal Chim Acta 792:86–92

    Article  CAS  Google Scholar 

  195. Li D-W, Zhai W-L, Li Y-T, Long Y-T (2013) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43

    Google Scholar 

  196. Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem 122(5):889–892

    Article  Google Scholar 

  197. Gao L, Sugiarto A, Harper JD, Cooks RG, Ouyang Z (2008) Design and characterization of a multisource hand-held tandem mass spectrometer. Anal Chem 80(19):7198–7205

    Article  CAS  Google Scholar 

  198. Ho J, Tan MK, Go DB, Yeo LY, Friend JR, Chang H-C (2011) Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry. Anal Chem 83(9):3260–3266

    Article  CAS  Google Scholar 

  199. Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81(21):9055–9064

    Article  CAS  Google Scholar 

  200. Yeo LY, Chang H-C, Chan PPY, Friend JR (2011) Microfluidic devices for bioapplications. Small 7(1):12–48

    Article  CAS  Google Scholar 

  201. Marle L, Greenway GM (2005) Microfluidic devices for environmental monitoring. TRAC-Trend Anal Chem 24(9):795–802

    Article  CAS  Google Scholar 

  202. Noiphung J, Talalak K, Hongwarittorrn I, Pupinyo N, Thirabowonkitphithan P, Laiwattanapaisal W (2015) A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups. Biosens Bioelectron 67:485–489

    Article  CAS  Google Scholar 

  203. Liu YM, Yu ST, Feng R, Bernard A, Liu Y, Zhang Y, Duan HZ, Shang W, Tao P, Song CY, Deng T (2015) A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater 27(17):2768–2774

    Article  CAS  Google Scholar 

  204. Koren K, Kuhl M (2015) A simple laminated paper-based sensor for temperature sensing and imaging. Sens Actuators, B 210:124–128

    Article  CAS  Google Scholar 

  205. Myers NM, Kernisan EN, Lieberman M (2015) Lab on paper: iodometric titration on a printed card. Anal Chem 87(7):3764–3770

    Article  CAS  Google Scholar 

  206. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275

    Article  Google Scholar 

  207. Chopra NG, Luyken R, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967

    Article  CAS  Google Scholar 

  208. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J-O, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893

    Article  CAS  Google Scholar 

  209. Kundu MK, Sadhukhan M, Barman S (2015) Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J Mater Chem B 3(7):1289–1300

    Article  CAS  Google Scholar 

  210. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5(1):225–230

    Article  CAS  Google Scholar 

  211. Gan W, Zhuang B, Zhang P, Han J, Li CX, Liu P (2014) A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14(19):3719–3728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China with grant Nos. 21305133, 21575071 and 21307120), Qingdao Innovation Leading Expert Program, Qingdao Basic & Applied Research project (15-9-1-100-jch) and Open Funds of the State Key Laboratory of Electroanalytical Chemistry (SKLEAC201601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanhong Xu or Jingquan Liu.

Ethics declarations

The author(s) declare that they have no competing interests

Additional information

Yuanhong Xu and Mengli Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, M., Kong, N. et al. Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Microchim Acta 183, 1521–1542 (2016). https://doi.org/10.1007/s00604-016-1841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1841-4

Keywords

Navigation