Skip to main content
Log in

Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a new chemiluminescence (CL) system based on the oxidation of rhodamine B (RhoB) with alkaline potassium permanganate in the presence of gold nanoparticles (Au-NPs) and anionic detergent sodium dodecyl sulfate. Free RhoB is weakly chemiluminescent when oxidized with permanganate at alkaline pH values. However, a remarkably strong enhancement of CL is observed in the presence of Au-NPs, probably due to a strong interaction between RhoB and the NPs. The possible mechanism was studied via recording the CL emission. It is also found that the intensity of CL gradually decreases in the presence of cyanide due to its interaction with the Au-NPs. The relation between the decreased CL intensity and cyanide concentration was exploited to develop a method for the determination of cyanide in the 0.01–0.5 μM concentration range, with a detection limit of 2.8 nM. The method was used to determine cyanide in spiked water, urine, and serum.

Alkaline permanganate-rhodamine B-SDS CL reaction is dramatically enhanced by gold nanoparticles. Based on the inhibiting effect of cyanide on this system, a sensitive CL method was developed for its determination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adcock JL, Barnett NW, Barrow CJ, Francis PS (2014) Advances in the use of acidic potassium permanganate as a chemiluminescence reagent: A review. Anal Chim Acta 807:9–28

    Article  CAS  Google Scholar 

  2. Navarrro MV, Payán MR, López MAB, Fernández-Torres R, Mochón MC (2010) Rapid flow injection method for the determination of sulfite in wine using the permanganate–luminol luminescence system. Talanta 82:2003–2006

    Article  CAS  Google Scholar 

  3. Nie F, Lu J (2008) Determination of fenfluramine based on potassium permanganate-calcein chemiluminescence system. Talanta 74:1242–1246

    Article  CAS  Google Scholar 

  4. Chen X, Wang C, Tan X, Wang J (2011) Determination of bisphenol a in water via inhibition of silver nanoparticles-enhanced chemiluminescence. Anal Chim Acta 689:92–96

    Article  CAS  Google Scholar 

  5. Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP (2010) Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TRAC-Trends Anal Chem 29:1113–1126

    Article  CAS  Google Scholar 

  6. Li Q, Zhang L, Li J, Lu C (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TRAC-Trends Anal Chem 30:401–413

    Article  Google Scholar 

  7. Manzoori JL, Amjadi M, Hassanzadeh J (2011) Enhancement of the chemiluminescence of permanganate-formaldehyde system by gold/silver nanoalloys and its application to trace determination of melamine. Microchim Acta 175:47–54

    Article  CAS  Google Scholar 

  8. Hassanzadeh J, Amjadi M, Manzoori JL, Sorouraddin MH (2013) Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application. Spectrochim Acta A 107:296–302

    Article  CAS  Google Scholar 

  9. The Agency for Toxic Substances and Disease Registry, Toxicological profile for cyanide, Atlanta, GA, US Department of Health and Human Services, 2006, pp. 221–228

  10. Touceda-Varela A, Stevenson EI, Galve-Gasion JA, Dryden DTF, Mareque-Rivas JC (2008) Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem Commun 44:1998–2000

    Article  Google Scholar 

  11. Lv J, Zhang Z, Li J, Luo L (2005) A micro-chemiluminescence determination of cyanide in whole blood. Forensic Sci Int 148:15–19

    Article  Google Scholar 

  12. Ishli A, Seno H, Suzuki KW, Suzuki O (1998) Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping. Anal Chem 70:4873–4876

    Article  Google Scholar 

  13. Shang L, Zhang L, Dong S (2009) Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst 134:107–113

    Article  CAS  Google Scholar 

  14. Kim MH, Kim S, Jang HH, Yi S, Seo SH, Han MS (2010) A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Lett 51:4712–4716

    Article  CAS  Google Scholar 

  15. Lou X, Zhang Y, Qin J, Li Z (2011) A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Chem Eur J 17:9691–9696

    Article  CAS  Google Scholar 

  16. Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC (2011) A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chem Eu J 17:8445–8451

    Article  CAS  Google Scholar 

  17. Badugu R, Lakowicz JR, Geddes CD (2005) Cyanide-sensitive fluorescent probes. Dyes Pigments 64:49–55

    Article  CAS  Google Scholar 

  18. Xu Z, Chen WX, Kim WHN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137

    Article  CAS  Google Scholar 

  19. Ma J, Dasgupta PK (2010) Recent developments in cyanide detection: a review. Anal Chim Acta 673:117–125

    Article  CAS  Google Scholar 

  20. United States Environmental Protection Agency in National Primary Drinking Water Standards. Vol No 816-F-03-016

  21. Christison TT, Rohrer JS (2007) Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A 1155:31–39

    Article  CAS  Google Scholar 

  22. Shang L, Dong S (2009) Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal Chem 81:1465–1470

    Article  CAS  Google Scholar 

  23. Liu Y, Ai K, Cheng X, Huo L, Lu L (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct Mater 20:951–956

    Article  CAS  Google Scholar 

  24. Gavrilov AV, Druzhinin AA, Zakharov KI, Ishutin VA, Nemkov SA, Pushkin IA (2005) Chemiluminescence determination of cyanide ions. J Anal Chem 60:1029–1034

    Article  CAS  Google Scholar 

  25. Tessier PM, Christesen SD, Ong KK, Clemente EM, Lenhoff AM, Kaler EW, Velev OD (2002) On-line spectroscopic characterization of sodium cyanide with nanostructured gold surface enhanced Raman spectroscopy substrates. Appl Spectrosc 56:1524–1530

    Article  CAS  Google Scholar 

  26. Taheri A, Noroozifar M, Khorasani-Motlagh M (2009) Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol–gel. J Electroanal Chem 628:48–54

    Article  CAS  Google Scholar 

  27. Zisimopoulos EG, Tsogas GZ, Giokas DL, Kapakoglou NI, Vlessidis AG (2009) Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts. Talanta 79:893–899

    Article  CAS  Google Scholar 

  28. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  29. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  30. Aherne D, Ledwith DM, Gara M (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18:2005–2016

    Article  CAS  Google Scholar 

  31. Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A 193:89–96

    Article  CAS  Google Scholar 

  32. Chen H, Gao F, He R, Cui DX (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interf Sci 315:158–163

    Article  CAS  Google Scholar 

  33. Navarro JR, Werts MH (2013) Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138:583–92

    Article  CAS  Google Scholar 

  34. Chang HY, Hsiung TM, Huang YF, Huang CC (2011) Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Environ Sci Technol 45:1534–1539

    Article  CAS  Google Scholar 

  35. Zheng A, Chen J, Wu G, Wei H, He C, Kai X, Wu G, Chen Y (2009) Optimization of a sensitive method for the “switch-on” determination of mercury (II) in waters using rhodamine B capped gold nanoparticles as a fluorescence sensor. Microchim Acta 164:17–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amjadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjadi, M., Hassanzadeh, J. & Manzoori, J.L. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles. Microchim Acta 181, 1851–1856 (2014). https://doi.org/10.1007/s00604-014-1269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1269-7

Keywords

Navigation