Skip to main content
Log in

A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Various methods have been developed in recent years for the determination of uranyl ion by making use of uranyl-specific DNAzymes. However, many of them suffer from hydrolysis by nucleases present in samples such as body fluids. We report here on an uranyl-specific nuclease-resistant DNA aptamer (UApt) as the recognition element, and how gold nanoparticles (AuNPs) can be used as signal reporters in the respective assay. The presence of uranyl ion leads to a conformational change of UApt, and this results in the dispersion of AuNPs and a decrease in the intensity of resonance light scattering (RLS) at around 573.0 nm. The conformational changes were also studied by polyacrylamide gel electrophoresis, circular dichroism, and UV–vis spectroscopy. The RLS signals are linearly related to the concentration of uranyl ion in the 22 to 550 nM range, with a detection limit of 6.7 nM. This method is more simple and robust than others owing to use of a UApt without a ribonucleotide adenosine. It has been successfully applied to the determination of uranyl ion in real samples. We presume that this method may be extended to the determination of other analytes by making use of the corresponding aptamer for the target.

The presence of UO2 2+ leads to the conformation change of UApt, resulting in the dispersion of AuNPs and decrease of the RLS intensity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darolles C, Broggio D, Feugier A, Frelon S, Dublineau I, De Meo M, Petitot F (2010) Different genotoxic profiles between depleted and enriched uranium. Toxicol Lett 192:337–348

    Article  CAS  Google Scholar 

  2. Pereira S, Camilleri V, Floriani M, Cavalié I, Garnier-Laplace J, Adam- Guillermin C (2012) Genotoxicity of uranium contamination in embryonic zebrafish cells. Aquat Toxicol 109:11–16

    Article  CAS  Google Scholar 

  3. Nriagu J, Nam DH, Ayanwola TA, Dinh H, Erdenechimeg E, Ochir C, Bolormaa TA (2012) High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Sci Total Environ 414:722–726

    Article  CAS  Google Scholar 

  4. Banday AA, Priyamvada S, Farooq N, Yusufi AN, Khan F (2008) Effect of uranyl nitrate on enzymes of carbohydrate metabolism and brush border membrane in different kidney tissues. Food Chem Toxicol 46:2080–2088

    Article  CAS  Google Scholar 

  5. Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta Gen Subj 1820:1940–1950

    Article  CAS  Google Scholar 

  6. Boulyga SF, Becker JS, Matusevitch JL, Dietze HJ (2000) Isotope ratio measurements of spent reactor uranium in environmental samples by using inductively coupled plasma mass spectrometry. Int J Mass Spectrom 203:143–154

    Article  CAS  Google Scholar 

  7. Misra NL, Dhara S, Óvári M, Záray G, Aggarwal SK, Varga I (2010) Determination of low atomic number elements at trace levels in uranium matrix using vacuum chamber total reflection X-ray fluorescence. Spectrochim Acta B 65:457–460

    Article  Google Scholar 

  8. Lehmann S, Geipel G, Grambole G, Bernhard G (2009) A novel time-resolved laser fluorescence spectroscopy system for research on complexation of uranium(IV). Spectrochim Acta A 73:902–908

    Article  CAS  Google Scholar 

  9. Sladkov V, Fourest B (2009) Simultaneous determination of uranium carbide dissolution products by capillary zone electrophoresis. J Chromatogr A 1216:2605–2608

    Article  CAS  Google Scholar 

  10. Sladkov V, Zhao Y, Mercier-Bion F (2011) Capillary zone electrophoresis for U(VI) and short chain carboxylic acid sorption studies on silica and rutile. Talanta 83:1595–1600

    Article  CAS  Google Scholar 

  11. Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226

    Article  CAS  Google Scholar 

  12. Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-pertrillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056–2061

    Article  CAS  Google Scholar 

  13. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  Google Scholar 

  14. Jiang Z, Zhang Y, Liang A, Chen C, Tian J, Li T (2012) Free-labeled nanogold catalytic detection of trace UO22+ based on the aptamer reaction and gold particle resonance scattering effect. Plasmonics 7:185–190

    Article  CAS  Google Scholar 

  15. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  CAS  Google Scholar 

  16. Zhou B, Shi LF, Wang YS, Yang HX, Xue JH, Liu L, Wang YS, Yin JC, Wang JC (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme–gold nanoparticle system. Spectrochim Acta A 110:419–424

    Article  CAS  Google Scholar 

  17. Fan Y, Long YF, Li YF (2009) A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal Chim Acta 653:207–211

    Article  CAS  Google Scholar 

  18. Zou QC, Zhang JZ, Chai SG (2011) Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes. Spectrochim Acta A 82:437–443

    Article  CAS  Google Scholar 

  19. Tang Q, Yuan Y, Xiao X, Hu J, Ma D, Gao Y (2013) DNAzyme based electrochemical sensors for trace uranium. Microchim Acta 180(11–12):1059–1064

    Article  CAS  Google Scholar 

  20. Brown AK, Liu J, He Y, Lu Y (2009) Biochemical characterization of a uranyl ion-specific DNAzyme. ChemBioChem 10:486–492

    Article  CAS  Google Scholar 

  21. Yin BC, Zuo P, Huo H, Zhong X, Ye BC (2010) DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 401:47–52

    Article  CAS  Google Scholar 

  22. Wang L, Yang CYJ, Medley CD, Benner SA, Tan WH (2005) Locked nucleic acid molecular beacons. J Am Chem Soc 127:15664–15665

    Article  CAS  Google Scholar 

  23. Kim J, Kim MY, Kim HS, Hah SS (2011) Binding of uranyl ion by a DNA aptamer attached to a solid support. Bioorg Med Chem Lett 21:4020–4022

    Article  CAS  Google Scholar 

  24. Miao XM, Ling LS, Shuai XT (2012) Detection of Pb2+ at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal Biochem 421:582–586

    Article  CAS  Google Scholar 

  25. Xu Z, Huang X, Dong C, Ren J (2013) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta. doi:10.1007/s00604-013-1132-2

    Google Scholar 

  26. Zhu J, Li T, Zhang L, Dong S, Wang E (2011) G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomaterials 32:7318–7324

    Article  CAS  Google Scholar 

  27. Gou XC, Liu J, Zhang HL (2010) Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chim Acta 668:208–214

    Article  CAS  Google Scholar 

  28. Rajesh J, Gubendran A, Rajagopal G, Athappan P (2012) Synthesis, spectra and DNA interactions of certain mononuclear transition metal(II) complexes of macrocyclic tetraaza diacetyl curcumin ligand. J Mol Struct 1010:169–178

    Article  CAS  Google Scholar 

  29. Zheng B, Cheng S, Liu W, Lam MHW, Liang H (2012) A simple colorimetric pH alarm constructed from DNA–gold nanoparticles. Anal Chim Acta 741:106–113

    Article  CAS  Google Scholar 

  30. Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618

    Article  CAS  Google Scholar 

  31. Purohit PJ, Goyal N, Thulasidas SK, Page AG, Sastry MD (2000) Electrothermal vaporization – inductively coupled plasma-atomic emission spectrometry for trace metal determination in uranium and thorium compounds without prior matrix separation. Spectrochim Acta B 55:1257–1270

    Article  Google Scholar 

  32. Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Simultaneous preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase. Talanta 70:257–266

    Article  CAS  Google Scholar 

  33. Ozdemir S, Kilinc E (2012) Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination. Microchim Acta 178(3–4):389–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21177052), the Science and Technology Program of Hunan Province in China (No. 2010SK3039) and the Construct Program of the Key Discipline (Public Health and Preventive Medicine) in Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Wang, YS., Yang, HX. et al. A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Microchim Acta 181, 1353–1360 (2014). https://doi.org/10.1007/s00604-014-1267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1267-9

Keywords

Navigation