Skip to main content
Log in

Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes.

Bare gold nanoparticles have been synthesized in a single-phase stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  2. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  3. Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E (2010) Step-growth polymerization of inorganic nanoparticles. Science 329:197–200

    Article  CAS  Google Scholar 

  4. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  Google Scholar 

  5. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  6. Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631

    Article  CAS  Google Scholar 

  7. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  8. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mer cury(II). Angew Chem 119:6948–6952

    Article  Google Scholar 

  9. Pang X, Zhao L, Han W, Xin X, Lin Z (2013) A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nanotechnol 8:426–431

    Article  CAS  Google Scholar 

  10. Wei H, Wang Z, Zhang J, House S, Gao YG, Yang L, Robinson H, Tan LH, Xing H, Hou C et al (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6:93–97

    Article  CAS  Google Scholar 

  11. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  12. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  13. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  14. Schmid G (1992) Large clusters and colloids metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  15. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc Chem Commun 801–802

  16. Stathis EC, Fabricanos A (1958) Preparation of colloidal gold. Chem Ind (London) 27:860–861

    Google Scholar 

  17. DiScipio RG (1996) Preparation of colloidal gold particles of various sizes using sodium borohydride and sodium cyanoborohydride. Anal Biochem 236:168–170

    Article  CAS  Google Scholar 

  18. Zhao CX, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479

    Article  CAS  Google Scholar 

  19. Acebal CC, Simonet BM, Valcárcel M (2013) Nanoparticles and continuous-flow systems combine synergistically for preconcentration. TrAC Trends Anal Chem 43:109–120

    Article  CAS  Google Scholar 

  20. Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanoparticle Res 10:925–934

    Article  CAS  Google Scholar 

  21. Ying Y, Chen GW, Zhao YC, Li SL, Yuan Q (2008) A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors. Chem Eng J 135:209–215

    Article  CAS  Google Scholar 

  22. Lohse SE, Eller JR, Sivapalan ST, Plews MR, Murphy CJ (2013) A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 7:4135–4150

    Article  CAS  Google Scholar 

  23. Song YJ, Hormes J, Kumar CSSR (2008) Microfluidic synthesis of nanomaterials. Small 4:698–711

    Article  CAS  Google Scholar 

  24. Richmond CJ, Miras HN, de la Oliva AR, Zang H, Sans V, Paramonov L, Makatsoris C, Inglis R, Brechin EK, Long DL et al (2012) Flow-system array for the discovery and scale up of inorganic clusters. Nat Chem 4:1037–1043

    Article  CAS  Google Scholar 

  25. Wagner J, Tshikhudo TR, Koehler JM (2008) Microfluidic generation of metal nanoparticles by borohydride reduction. Chem Eng J 135:S104–S109

    Article  CAS  Google Scholar 

  26. Lin XZ, Terepka AD, Yang H (2011) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4:2227–2232

    Article  Google Scholar 

  27. Köhler JM, Romanus H, Hübner U, Wagner J (2007) Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems. J Nanomater 98134

  28. Shalom D, Wootton RCR, Winkle RF, Cottam BF, Vilar R, deMello AJ, Wilde CP (2007) Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Mater Lett 61:1146–1150

    Article  CAS  Google Scholar 

  29. Yen BKH, Stott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15:1858–1862

    Article  CAS  Google Scholar 

  30. López-Lorente AI, Simonet BM, Valcárcel M, Mizaikoff B (2013) Bare gold nanoparticles mediated surface-enhanced raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal Chim Acta 788:122–128

    Article  Google Scholar 

  31. López-Lorente AI, Simonet BM, Valcárcel M, Eppler S, Schindl R, Kranz C, Mizaikoff B (2014) Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential. Talanta 118:321–327

    Article  Google Scholar 

  32. López-Lorente AI, Sieger M, Valcárcel M, Mizaikoff B (2014) Infrared attenuated total reflection spectroscopy for the characterization of gold nanoparticles in solution. Anal Chem 86:783–789

    Article  Google Scholar 

  33. Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Spain’s Ministry of Innovation and Science for funding Project CTQ2011-23790 and Junta de Andalucía for Project FQM4801. A.I. López-Lorente also wishes to thank the Ministry for the award of a Research Training Fellowship (Grant AP2008-02939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Valcárcel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Lorente, Á.I., Valcárcel, M. & Mizaikoff, B. Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS. Microchim Acta 181, 1101–1108 (2014). https://doi.org/10.1007/s00604-014-1215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1215-8

Keywords

Navigation