Skip to main content
Log in

A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a facile method for the preparation of a gold electrode modified with a flower-like gold nanostructure using potentiostatic electrodeposition. Its formation, morphology, and electrochemical properties were studied by scanning electron microscopy and cyclic voltammetry. The resulting nanostructures possess rough and enlarged surface areas and enable fast electron transfer in the selective and sensitive detection of ascorbic acid (AA) and dopamine (DA) in phosphate-buffered saline without disturbance by common interferents. The differential pulse voltammetry anodic peak currents at approximately −0.03 V and 0.16 V are strongly enhanced in the presence of AA and DA, respectively. The electrode responds linearly to AA in the concentration range from 60 μM to 500 μM, with a limit of detection at 10 μM. The respective data for DA are 1 μM to 150 μM, and the limit of detection is 0.2 μM.

In this manuscript, a facile preparation method of flower-like Au nanostructure-covered gold electrode (FANE) was developed via potentiostatic electrodeposition method for the first time. The prepared FANE was applied to selective and sensitive detection of ascorbic acid (AA) and dopamine (DA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    CAS  Google Scholar 

  2. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  CAS  Google Scholar 

  3. Gil-Loyzaga P, Parés-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 48:157–160

    Article  CAS  Google Scholar 

  4. Chen YZ, Yang J, Ou XM, Zhang XH (2012) An organic nanowire–metal nanoparticle hybrid for the highly enhanced fluorescence detection of dopamine. Chem Commun 48:5883–5885

    Article  CAS  Google Scholar 

  5. Hu Y, Li X, Pang Z (2005) Indirect chemiluminescence detection for capillary zone electrophoresis of monoamines and catechol using luminol-K3[Fe(CN)6] system. J Chromatogr A1091:194–198

    Google Scholar 

  6. Yang ZJ, Huang XC, Li J, Zhang YC, Yu SH, Xu Q, Hu XY (2012) Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine. Microchim Acta 177:381–387

    Article  CAS  Google Scholar 

  7. Lin KC, Yin CY, Chen SM (2011) Simultaneous Determination of AA, DA, And UA Based on Bipolymers by Electropolymerization of Luminol And 3,4-Ethylenedioxythiophene Monomers. Int J Electrochem Sci 6:3951–3965

    CAS  Google Scholar 

  8. Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325–331

    Article  CAS  Google Scholar 

  9. Yu DJ, Zeng YB, Qi YX, Zhou TS, Shi GY (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron 38:270–277

    Article  CAS  Google Scholar 

  10. El-Said WA, Lee JH, Oh BK, Choi JW (2010) 3-D nanoporous gold thin film for the simultaneous electrochemical determination of dopamine and ascorbic acid. Electrochem Commun 12:1756–1759

    Article  CAS  Google Scholar 

  11. Lin KC, Tsai TH, Chen SM (2010) Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT–PEDOT film. Biosens Bioelectron 26:608–614

    Article  CAS  Google Scholar 

  12. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11:4029–4036

    Article  CAS  Google Scholar 

  13. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  14. Xie JP, Zhang QB, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACSNano 2:2473–2480

    CAS  Google Scholar 

  15. Wang W, Yang X, Cui H (2008) Growth mechanism of flowerlike gold nanostructures: Surface Plasmon Resonance (SPR) and Resonance Rayleigh Scattering (RRS) approaches to growth monitoring. J Phys Chem C 112:16348–16353

    Article  CAS  Google Scholar 

  16. Li F, Han XP, Liu SF (2011) Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens Bioelectron 26:2619–2625

    Article  CAS  Google Scholar 

  17. Wang L, Chen XH, Wang XL, Han XP, Liu SF, Zhao CZ (2011) Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor. Biosens Bioelectron 30:151–157

    Article  CAS  Google Scholar 

  18. Chen Y, Yang XJ, Guo LR, Li J, Xia XH, Zheng LM (2009) Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid. Anal Chim Acta 644:83–89

    Article  CAS  Google Scholar 

  19. Guo SJ, Wang L, Wang EK (2007) Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface. Chem Commun 3163–3165

  20. Qian L, Yang XR (2006) Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers. J Phys Chem B 110:16672–16678

    Article  CAS  Google Scholar 

  21. Liu BQ, Tang DP, Tang J, Su BL, Li QF, Chen GN (2011) A graphene-basedAu(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Analyst 136:2218–2220

    Article  CAS  Google Scholar 

  22. Su BL, Tang J, Yang HH, Chen GN, Huang JX, Tang DP (2011) A graphene platform for sensitive electrochemical immunoassay of carcinoembryoninc antigen based on gold-nanoflower biolabels. Electroanalysis 23:832–841

    Article  CAS  Google Scholar 

  23. Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG (2010) Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc 132:7580–7581

    Article  CAS  Google Scholar 

  24. Weng SH, Lin ZH, Chen LX, Zhou JZ (2010) Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochim Acta 55:2727–2733

    Article  CAS  Google Scholar 

  25. Zhang H, Xu JJ, Chen HY (2008) Shape-controlled gold nanoarchitectures: synthesis, superhydrophobicity, and electrocatalytic properties. J Phys Chem C 112:13886–13892

    Article  CAS  Google Scholar 

  26. Greene LE, Yuhas BD, Law M, Zitoun D, Yang PD (2006) Solution-grown zinc oxide nanowires. Inorg Chem 45:7535–7543

    Article  CAS  Google Scholar 

  27. Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J Electroanal Chem 407:1–11

    Article  Google Scholar 

  28. Gao W, Xia XH, Xu JJ, Chen HY (2007) Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)3 2+/TPA system with high sensitivity. J Phys Chem C 111:12213–12219

    Article  CAS  Google Scholar 

  29. Zhong GX, Liu AL, Chen XH, Wang K, Lian ZX, Liu QC, Chen YZ, Du M, Lin XH (2011) Electrochemical biosensor based on nanoporous gold electrode for detection of PML/RARα fusion gene. Biosens Bioelectron 26:3812–3817

    Article  CAS  Google Scholar 

  30. Xia Y, Huang W, Zheng JF, Niu ZJ, Li ZL (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561

    Article  CAS  Google Scholar 

  31. Hsiao MW, Adzic RR, Yeager EB (1996) Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J Electrochem Soc 143:759–767

    Article  CAS  Google Scholar 

  32. Ahn M, Kim JW (2012) Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem 683:75–79

    Article  CAS  Google Scholar 

  33. Zhao Y, Li SH, Chu J, Chen YP, Li WW, Yu HQ, Liu G, Tian YC, Xiong Y (2012) A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. Biosens Bioelectron 35:115–122

    Article  CAS  Google Scholar 

  34. Liu X, Xie LL, Li HL (2012) Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid. J Electroanal Chem 682:158–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National High Technology and Development of China (863 Project: 2012AA022604), the National Science Foundation of Fujian Province (No. 2011J05023), the Scientific Research Program of Fujian Medical University (2010BS006), and the State Key Laboratory for Physical Chemistry of the Solid Surface (Xiamen University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohuang Weng or Xinhua Lin.

Additional information

Y. Zheng and Z. Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Huang, Z., Zhao, C. et al. A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180, 537–544 (2013). https://doi.org/10.1007/s00604-013-0964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0964-0

Keywords

Navigation