Skip to main content
Log in

Practical Use of the Ubiquitous-Joint Constitutive Model for the Simulation of Anisotropic Rock Masses

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Anisotropic rock masses, the behavior of which is dominated by closely spaced planes of weakness, present particular difficulties in rock engineering analyses. The orientation of discontinuities relative to an excavation face has a significant influence on the behavioral response. At the present time, discontinuum modeling techniques provide the most rigorous analyses of the deformation and failure processes of anisotropic rock masses. However, due to their computational efficiency continuum analyses are routinely used to represent laminated materials through the implementation of a Ubiquitous-Joint model. The problem with Ubiquitous-Joint models is that they do not consider the effects of joint spacing, length and stiffness. As such, without an understanding of the limitations of the modeling approach and detailed calibration of the material response, simulation results can be misleading. This paper provides a framework to select and validate ubiquitous-joint constitutive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Adhikary DP (2010) Shortcomings in the standard continuum based implicit joint model of layered rocks. J Geol Min Res 2(2):23–28

    Google Scholar 

  • Al-Harthi AA (1998) Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia. Eng Geol 50:49–57

    Article  Google Scholar 

  • Board M, Chacon E, Varona P, Lorig L (1996) comparative analysis of toppling behaviour at chuquicamata open—pit mine, Chile. Trans Inst Min Metall A 105:A11–A21

    Google Scholar 

  • Brady BHG, Brown ET (2004) Rock mechanics for underground mining, 3rd edn. Springer, New York

    Google Scholar 

  • Brown ET, Richards LR, Barr MV (1977) Shear strength characteristics of delabole slates. In: Proceedings of conference rock engineering, Univ Newcastle upon Tyne

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44:247–265

    Article  Google Scholar 

  • Clark I (2006) Simulation of rock mass strength using ubiquitous-joints. In: Hart R, Varona P (eds) Proceedings of 4th international FLAC symposium on numerical modeling in geomechanics—2006, Madrid, Spain. Paper no. 08–07, Minneapolis, Itasca

  • Cundall PA, Fairhurst C (1986) Correlation of discontinuum models with physical observations—an approach to the estimation of rock mass behavior. Felsbau 4:4

    Google Scholar 

  • Damjanac B, Board M, Lin M, Kicker D, Leem J (2007) Mechanical degradation of emplacement drifts at Yucca Mountain—a modeling case study part II: lithophysal rock. Int J Rock Mech Min Sci 44:368–399

    Article  Google Scholar 

  • Dawson EM, Cundall PA (1992) Cosserat plasticity for modeling lay red rock. In: Proceedings, ISRM regional conference on fractured and jointed rock masses (Lake Tahoe, June 1992), vol 2. Lawrence Berkeley Laboratory, Berkeley, pp 269–276

  • Dawson EM, Cundall PA (1996) Slope stability using micropolar plasticity. In: Aubertin M et al (eds) Rock mechanics tools and techniques (2nd North American Rock mechanics symposium, Montréal, June 1996), vol 1. Balkema, Rotterdam, pp 551–558

    Google Scholar 

  • Donath FA (1972) Effects of cohesion and granularity on deformational behavior of anisotropic rock. Studies in mineralogy and precambrian geology. Geol. Soc. Am Memoir 135:95–128

    Article  Google Scholar 

  • Fairhurst C, Damjanac B, Brandshaug T (2006) Rock mass strength and numerical experiments. In: Publications of the geotechnical institute no. 2006-5 (Proceedings, 35 Geomechanics Colloquium, November 2006). Technical University Mining Academy Freiberg, Freiberg, pp 1–20

  • Gao FQ, Stead D (2014) The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci 68:1–14

    Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam, p 215

    Google Scholar 

  • Itasca Consulting Group, Inc. (2007) 3DEC—3-dimensional distinct element code, version 4.1. Itasca, Minneapolis

    Google Scholar 

  • Itasca Consulting Group, Inc. (2011) UDEC—universal distinct element code, version 5.0. Itasca, Minneapolis

    Google Scholar 

  • Itasca Consulting Group, Inc. (2012) FLAC3D—fast lagrangian analysis of continua in three-dimensions, version 5.0. Itasca, Minneapolis

    Google Scholar 

  • Jaeger JC (1960) Shear failure of anisotropic rocks. Geol Mag 97:65–72

    Article  Google Scholar 

  • Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics, 3rd edn. Chapman and Hall, New York

    Google Scholar 

  • Kale SM, Trudinger JP (1975) Slope stability investigations at the Mt. Whaleback iron ore mine, Western Australia. In: Papers presented at the SA conference 1975. Part B: Whyalla, Leigh Creek, and Adelaide. AusIMM, B, pp 571–583

  • Karampinos E, Hadjigeorgiou J, Hazzard J, Turcotte P (2015) Discrete element modelling of the buckling phenomenon in deep hard rock mines. Int J Rock Mech Min Sci 80:346–356

    Google Scholar 

  • Leitner R, Potsch M, Schubert W (2006) Aspects on the numerical modeling of rock mass anisotropy in tunneling. Felsbau 24:2

    Google Scholar 

  • McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Energy Ind Trans Am Soc Mech Eng Ser B 89:62–73

    Google Scholar 

  • Mühlhaus HB (1993) Continuum models for layered and blocky materials. In: Comprehensive rock mechanics, Pergamon Press, pp 209–230

  • Perman F, Sjoberg J, Dahner C (2011) Detailed three-dimensional stress analysis of complex orebody geometry—model setup and results for the Malmberget Mine. In: Sainsbury, Hart, Detournay, Nelson (eds) Continuum and distinct element numerical modeling in geomechanics—2011. Paper: 02-04, Itasca International Inc., Minneapolis. ISBN: 978-0-9767577-2-6

  • Riahi A, Curran JH (2008) Application of Cosserat continuum approach in the finite element shear strength reduction analysis of jointed rock slopes. In: Geomechanics in the emerging social & technological age (CD proceedings, 12th IACMAG conference, Goa, India, October 2008), paper no. A15. X-CD Technologies Inc, Toronto

  • Riahi A, Curran JH (2009) Full 3D finite element Cosserat formulation with application in layered structures. Appl Math Model 33(8):3450–3454

    Article  Google Scholar 

  • Sainsbury B (2012) A model for cave propagation and subsidence assessment in jointed rock masses. A Thesis submitted to The University of New South Wales in fulfilment of the requirements for the degree Doctor of Philosophy, August 2012

  • Sainsbury D, Sainsbury B (2013) Three-dimensional analysis of pit slope stability in anisotropic rock masses. In: Proceedings of slope stability 2013, Brisbane, Australia

  • Sainsbury B, Pierce M, Mas Ivars D (2008) Analysis of caving behavior using a synthetic rock mass (SRM)—ubiquitous-joint rock mass (UJRM) modeling technique. In: Proceedings of the 1st southern hemisphere international rock mechanics symposium (SHIRMS), September, 2008

  • Sainsbury D, Sainsbury B, Sweeney E (2016a) Three-dimensional analysis of complex anisotropic slope instability at MMG’s century mine. Min Technol. doi:10.1080/14749009.2016.1163918

    Google Scholar 

  • Sainsbury D, Sainsbury B, Paetzold H-D, Lourens P, Vakili A (2016b) Cave propagation and subsidence behaviour of lift 1 at the Palabora block cave mine. In: Seventh international conference & exhibition on mass mining—MassMin Sydney 2016

  • Salcedo DA (1983) Macizos Rocosos: Caracterización, Resistencia al Corte y Mecanismos de Rotura. In: Proceedings of 25 Aniversario Conferencia Soc. Venezolana de Mecánica del Suelo e Ingeniería de Fundaciones, Caracas, pp 143–172

  • Singh J, Ramamurth T, Venkatappa RG (1989) Strength anisotropies in rocks. Indian Geotech J 19(2):147–166

    Google Scholar 

  • Tien YM, Kuo MC, Juang CH (2006) An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci 43:1163–1181

    Article  Google Scholar 

  • Yoshinaka R, Osada M, Park H, Sasaki T, Sasaki K (2008) Practical determination of mechanical design parameters of intact rock considering scale effect. Eng Geol 96:173–186

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the management team at Castlemaine Goldfields Limited for their permission to publish this work. We would also like to acknowledge the assistance of Christine Detournay (Itasca Consulting Group) for her constructive review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Sainsbury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sainsbury, B.L., Sainsbury, D.P. Practical Use of the Ubiquitous-Joint Constitutive Model for the Simulation of Anisotropic Rock Masses. Rock Mech Rock Eng 50, 1507–1528 (2017). https://doi.org/10.1007/s00603-017-1177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1177-3

Keywords

Navigation