Skip to main content
Log in

Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations. We described the diversity of AMF associated with rubber tree roots in Northeast Thailand in relation to tree age and soil parameters along a chronosequence of rubber tree plantations. Cassava fields were included for comparison. Rubber tree and cassava roots harbored high diversity of AMF (111 Virtual Taxa, VT), including 20 novel VT. AMF VT richness per sample was consistently high (per site mean 16 to 21 VT per sample) along the chronosequence and was not related to soil properties. The composition of AMF communities differed between cassava and rubber tree plantations and was influenced by soil texture and nutrient content (sand, K, P, Ca). AMF community composition gradually shifted with the age of the trees. Our results suggest that the high diversity of AMF in this region is potentially significant for maintaining high functionality of AMF communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akpan AU, Edem SO, Ndaeyo NU (2007) Latex yield of rubber (Hevea brasiliensis Muell Argo) as influenced by clone planted and locations with varying fertility status. J Agric Soc Sci 3:1813–2235

    Google Scholar 

  • Alguacil MM, Lozano Z, Campoy MJ, Roldán A (2010) Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aweto AO (1987) Physical and nutrient status of soils under rubber (Hevea brasiliensis) of different ages in south-western Nigeria. Agr Syst 23:63–72

    Article  Google Scholar 

  • Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borriello R, Berruti A, Lumini E, Della Beffa MT, Scariot V, Bianciotto V (2015) Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza 25:253–265

    Article  PubMed  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis vol. 2. American Society of Agronomy, Madison, pp 1149–1178

    Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406

    Article  Google Scholar 

  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659

    Article  PubMed  Google Scholar 

  • Cao Y, Fu S, Zou X, Cao H, Shao Y, Zhou L (2010) Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur J Soil Biol 46:128–135

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at different maize plant growth stages and root locations. Microbiol Res 164:391–399

    Article  PubMed  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Chaiyasen A, Young JP, Teaumroong N, Gavinlertvatana P, Lumyong S (2014) Characterization of arbuscular mycorrhizal fungus communities of Aquilaria crassna and Tectona grandis roots and soils in Thailand plantations. PLoS One 9, e112591

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381

    Article  CAS  Google Scholar 

  • Cuenca G, Meneses E (1996) Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 183:315–322

    Article  CAS  Google Scholar 

  • Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7, e41938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Jairus T, Vasar M, Öpik M, Zobel M (2016) Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biol Biochem 97:63–70

    Article  CAS  Google Scholar 

  • De Beenhouwer M, Muleta D, Peeters B, Van Geel M, Lievens B, Honnay O (2015) DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities. Agron Sustain Dev 35:241–249

    Article  Google Scholar 

  • de Cárcer DA, Denman SE, McSweeney C, Morrison M (2011) Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl Environ Microbiol 77:8795–8798

    Article  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann F (1994). Mycorrhizal situation of native trees in the Brazilian tropical ecosystems Varzea, Igapo, and Terra Firme. In: Lieberei R, Voß K, Brügmann C (eds.), Tropische Nutzpflanzen. “Publisher unknown”, Hamburg, 70–77

  • Feldmann F, da Silva Jr JP, Idczak E, Lieberei R (2000) AMF spore community composition at natural and agricultural sites in Central Amazonia-a long term study. Hamburg, 669-682

  • García de León D, Moora M, Öpik M, Neuenkamp L, Gerz M, Jairus T, Vasar M, Bueno CG, Davison J, Zobel M (2016) Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 92:1–9

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gryndler M, Vejsavocá H, Vancura V (1992) The effect of magnesium ions on the vesicular-arbuscular mycorrhizal infection of maize roots. New Phytol 122:455–460

    Article  CAS  Google Scholar 

  • Guadarrama P, Castillo S, Ramos-Zapata JA, Hernàndez-Cuevas LV, Camargo-Ricalde SL (2014) Arbuscular mycorrhizal fungal communities in changing environments: the effects of seasonality and anthropogenic disturbance in a seasonal dry forest. Pedobiologia 57:87–95

    Article  Google Scholar 

  • Hart MM, Gorzelak M, Ragone D, Murch SJ (2014) Arbuscular mycorrhizal fungal succession in a long-lived perennial. Botany 92:313–320

    Article  Google Scholar 

  • Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community structure. Biol Fertil Soils 49:1109–1121

    Article  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Bräu L, Robin A, Robain H, Wiriyakitnateekul W, Lesueur D (2015) High colonization by native arbuscular mycorrhizal fungi (AMF) of rubber trees in small-holder plantations on low fertility soils in North East Thailand. Arch Agron Soil Sci 62:1041–1048

    Article  Google Scholar 

  • Ikram A, Mahmud AW, Ghani MN, Ibrahim MT, Zainal AB (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. seedling rootstock with vesicular-arbuscular mycorrhizal (VAM) fungi. Plant Soil 145:231–236

    Article  Google Scholar 

  • Jarstfer GA, Farmer-Koppenol P, Sylvia MD (1998) Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Jayaratne AHR, Peries OS, Waidyanatha UP (1984) Effect of vesicular-arbuscular mycorrhizae on seedling of Hevea and Pueraria phaseoloides. J Rub Res Ins Sri Lanka 62:75–84

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Kilmer VJ, Alexander LT (1949) Methods of making mechanical analyses of soils. Soil Sci 68:15–24

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Liu Y, He L, An L, Helgason T, Feng H (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins Johnson N, Feng H (2012) Direct and indirect influences of 8-yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2009) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127

    Article  CAS  PubMed  Google Scholar 

  • Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHN, Wagner H (2012) Package ‘vegan’: community ecology package, version 2.0-4.

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147

    Article  Google Scholar 

  • Orimoloye JR, Ugwa IK, Idoko SO (2010) Soil management strategies for rubber cultivation in an undulating topography of Northern Cross River State. J Soil Sci Env Manage 1:34–39

    CAS  Google Scholar 

  • Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35, e130

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira CMR, da Silva DKA, Ferreira ACA, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agric Ecosyst Environ 185:245–252

    Article  Google Scholar 

  • Pinheiro J, Bates D, Saikat D, Sarkar D, The R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-113. http://CRAN.R-project.org/package=nlme

  • Rao PS, Vijayakumar KR (1992) Climatic requirements. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier, Amsterdam, pp 200–219

    Chapter  Google Scholar 

  • Rao PS, Saraswathyamma CK, Sethuraj MR (1998) Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agr Forest Meteorol 90:235–245

    Article  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Robert DW (2012) Labdsv: ordination and multivariate analysis for ecology. R package version 1.5-0

  • Saengruksawong C, Khamyong S, Anongrak N, Pinthong J (2012) Growths and carbon stocks of para rubber plantations on Phonpisai soil series in northeastern Thailand. Rub Thai J 1:1–18

    Google Scholar 

  • Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M (2014) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92:277–285

    Article  Google Scholar 

  • Schwob I, Ducher M, Coudret A (1999) Effects of climatic factors on native arbuscular mycorrhizae and Meloidogyne exigua in a Brazilian rubber tree (Hevea brasiliensis) plantation. Plant Pathol 48:19–25

    Article  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa-Rodriguez T, Dupré de Boulois H, Granet F, Aurel S, Elgarejo LM, Arron MP, Eclerck S (2013) In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg. In Vitro Cell Dev Biol Plant 49:207–215

    Article  Google Scholar 

  • Stutz JC, Copeman R, Martin CA, Morton JB (2000) Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245

    Google Scholar 

  • Symanczik S, Courty PE, Boller T, Wiemken A, Al-Yahya’ei MN (2015) Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25:639–647

    Article  PubMed  Google Scholar 

  • Tawaraya K, Takaya Y, Turjaman M, Tuah SJ, Limin SH, Tamai Y, Cha JY, Wagatsuma T, Osaki M (2003) Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecol Manag 182:381–386

    Article  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties—agronomy monographs no. 9. American Society of Agronomy, Madison, pp 159–165

    Google Scholar 

  • Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316

    Article  Google Scholar 

  • Tscherko D, Hammesfahr U, Marx MC, Kandeler E (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol Biochem 36:1685–1698

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Van Geel M, Ceustermans A, Van Hemelrijck W, Lievens B, Honnay O (2015) Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale. Mol Ecol 24:941–952

    Article  PubMed  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Caruso T, Rillig MC (2013) Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368:507–518

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JP, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Env 28:316–324

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Nicolaisen M, Larsen J, Ravnskov S (2012) Succession of root-associated fungi in Pisum sativum during a plant growth cycle as examined by 454 pyrosequencing. Plant Soil 358:225–233

    Article  CAS  Google Scholar 

  • Zobel M, Öpik M (2014) Plant and arbuscular mycorrhizal fungal (AMF) communities—which drives which? J Veg Sci 25:1133–1140

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Deakin University, CIRAD, and the UMR Eco&Sols and was part of the TICA project entitled “Towards an improvement of soil and water quality in the context of land use and climate changes in Thailand.” Authors are grateful to Khun Tum and Khun Kasem for the assistance with the field work. MÖ, JD, TJ, and MV are supported by Estonian Research Council (grant IUT20-28) and European Regional Development Fund (Centre of Excellence EcolChange).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Herrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

ESM 2

Phylogenetic tree (NJ tree, Bootstrap n = 100) of SSU rRNA gene sequences of earlier described and novel AMF VT detected in rubber tree and cassava roots. Sequences obtained in this study are indicated in black and type sequences of AMF VT from MaarjAM database are indicated in red. Novel VT are indicated in green. (PDF 64 kb)

ESM 3

Detection of AMF virtual taxa (VT) in rubber tree and cassava roots using 454 sequencing of SSU rRNA gene fragments: (a) rarefaction curves showing estimated VT richness in relation to sequencing depth per sample; and (b) species accumulation curves showing estimated VT richness in relation to sample size per site type. (PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, L., Lesueur, D., Bräu, L. et al. Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza 26, 863–877 (2016). https://doi.org/10.1007/s00572-016-0720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0720-5

Keywords

Navigation